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Abstract

Traditional clinician diagnosis requires massive manual labor from experienced doctors,

which is time-consuming and costly. Computer-aided systems are therefore proposed

to reduce doctors’ efforts by using machines to automatically make diagnosis and

treatment recommendations. The recent success in deep learning has largely advanced

the field of computer-aided diagnosis by offering an avenue to deliver automated medical

image analysis. Despite such progress, there remain several challenges towards medical

machine intelligence, such as unsatisfactory performance regarding challenging small

targets, insufficient training data, high annotation cost, the lack of domain-specific

knowledge, etc. These challenges cultivate the need for developing data-efficient and

knowledge-aware deep learning techniques which can generalize to different medical tasks

without requiring intensive manual labeling efforts, and incorporate domain-specific

knowledge in the learning process.

In this thesis, we rethink the current progress of deep learning in medical image

analysis, with a focus on the aforementioned challenges, and present different data-

efficient and knowledge-aware deep learning approaches to address them accordingly.

Firstly, we introduce coarse-to-fine mechanisms which use the prediction from the

first (coarse) stage to shrink the input region for the second (fine) stage, to enhance

the model performance especially for segmenting small challenging structures, such

as the pancreas which occupies only a very small fraction (e.g., < 0.5%) of the

entire CT volume. The method achieved the state-of-the-art result on the NIH

pancreas segmentation dataset. Further extensions also demonstrated effectiveness for
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segmenting neoplasms such as pancreatic cysts or multiple organs.

Secondly, we present a semi-supervised learning framework for medical image

segmentation by leveraging both limited labeled data and abundant unlabeled data.

Our learning method encourages the segmentation output to be consistent for the

same input under different viewing conditions. More importantly, the outputs from

different viewing directions are fused altogether to improve the quality of the target,

which further enhances the overall performance. The comparison with fully-supervised

methods on multi-organ segmentation confirms the effectiveness of this method.

Thirdly, we discuss how to incorporate knowledge priors for multi-organ segmen-

tation. Noticing that the abdominal organ sizes exhibit similar distributions across

different cohorts, we propose to explicitly incorporate anatomical priors on abdominal

organ sizes, guiding the training process with domain-specific knowledge. The ap-

proach achieves 84.97% on the MICCAI 2015 challenge “Multi-Atlas Labeling Beyond

the Cranial Vault”, which significantly outperforms previous state-of-the-art even

using fewer annotations.

Lastly, by rethinking how radiologists interpret medical images, we identify one

limitation for existing deep-learning-based works on detecting pancreatic ductal ade-

nocarcinoma is the lack of knowledge integration from multi-phase images. Thereby,

we introduce a dual-path network where different paths are connected for multi-phase

information exchange, and an additional loss is added for removing view divergence.

By effectively incorporating multi-phase information, the presented method shows

superior performance than prior arts on this matter.
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Chapter 1

Introduction

1.1 Background

Deep learning has achieved remarkable progress in many domains including computer

vision, natural language processing, and speech recognition, thereby propelling us into

the era of artificial intelligence (AI). As a fundamentally important problem which

could impact human lives, the development of intelligent medical machine learning

systems for healthcare has garnered great research attention. In the meantime,

medical images, which constitute the most commonly encountered healthcare data,

have become one of the most important sources of evidence for clinical analysis and

medical intervention [1].

Therefore, how to use AI-based techniques to drive automated interpretation of

medical images has been widely studied. The successful applications include image

registration, anatomical/cell structures detection, tissue segmentation, computer-aided

disease diagnosis or prognosis, and so on [2, 3]. However, as deep learning exploits

hierarchical feature representations which are highly data-driven, there remain several

critical challenges towards medical machine intelligence, to name a few:

• The detection of small targets (e.g., the pancreas, neoplasms) from medical im-

ages can be notoriously difficult due to their low resolution and noisy boundaries,

which makes it easily confused by the complex and variable background.
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• Deep learning models generally rely on large, representative, and well-annotated

datasets to achieve high performance. However, annotating medical images

demands extensive clinical expertise and manual labor, making it difficult to

acquire large-scale datasets with complete and high-quality labels [4].

• Knowledge priors can take many forms: shape models; statistics on sizes/spatial

locations; boundaries and edge polarity shape models; topology specification;

geometrical interaction and distance prior between different regions/labels;

atlas or pre-known models [5]. However, deep networks make decisions solely

by extracting hierarchical features based on local textures or patterns, which

generally make them lack the ability of leveraging prior information.

• In real clinical practice, medical images can take various forms (e.g., different

modalities/phases) based on the imaging protocol. The deep-learning-based

techniques are expected to process different image forms. This can be important

especially for cancer detection problems which are critical to give patients the

best chance of recovery and survival.

These challenges have affected the applicability of such models being deployed in

safety-critical medical scenarios. In the face of these challenges, we aim to develop

data-efficient and knowledge-aware deep learning techniques which can generalize

to different medical tasks without requiring intensive manual labeling efforts, and

incorporate domain-specific knowledge in the learning process.

In this thesis, we will present our efforts towards medical machine intelligence by

elaborating how to design data-efficient and knowledge-aware deep learning approaches

from different aspects, including new training approaches, semi-supervised learning

strategies, formulations of knowledge priors, and optimization methods, to enable

effective learning from limited training data and incomplete labels.
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1.2 Motivation

Medical image analysis is an essential requisite for many clinical applications such as

computer-aided diagnosis, computer-aided surgery and radiation therapy. And it also

plays a key role in modern healthcare diagnostics and procedures. With the advance of

deep learning, how to harness powerful deep networks to solve medical image analysis

problems has become an emerging topic. However, this can be quite challenging

as medical images exhibit different traits from natural images as aforementioned in

Section 1.1. These challenges inhibit the direct deployment of existing state-of-the-art

networks in real-world clinical environments and motivate us to design methods which

are tailored to medical data.

In terms of medical image segmentation, the current status is that for many

abdominal organs (e.g., liver, heart or kidneys), state-of-the-art performances in terms

of Dice have already been far beyond 90%. Similar performances have also been

observed for some targets outside the abdominal region (such as the brain) by directly

applying deep learning approaches [6]. However, the segmentation of the pancreas

report lower performances [7, 8]. In terms of this phenomenon, we have conducted some

diagnosis experiments on the publicly available NIH pancreas segmentation dataset [7]

consisting of 82 healthy cases. And we find that simply training and testing on the

whole volume based on a state-of-the-art network only yields an average segmentation

performance of 75.7% in terms of the average Dice score. For comparison, if we

train/test with the same network but only inside the region-of-interest, in other words,

we crop the pancreatic region from the CT image based on the groundtruth annotation

and exclusively train/test on this region, we can then obtain a performance boost

of around 8%. In the meantime, this huge performance gap doesn’t occur for large

organs such as the liver. Based on this observation, we identify that for small targets,

deep networks are easily confused by the complex and variable background which
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occupies a large fraction of the input volume. Therefore, to deal with small target

segmentation, we design a multi-stage coarse-to-fine segmentation strategy where the

first stage is used to extract the attentive region, based on which the second stage

can then perform segmentation more accurately by effectively reducing the complex

background and enhancing the salient features. The coarse stage and the fine stage

can be either trained individually in a step-wise manner, or learned in an end-to-end

fashion by cascading the two stages. Beyond single-target segmentation, we find that

the multi-stage framework can also be well adapted to multi-organ segmentation.

Compared with natural image processing tasks, it is difficult and expensive to obtain

large-scale datasets since collecting medical data is a complex and expensive procedure

that requires the collaboration of researchers and radiologists [9]. By contrast, it is

generally much easier to acquire unlabeled or partially-labeled data, which in turn

motivates us to design semi/weakly-supervised approaches for data-efficient medical

image analysis. By leveraging the power of additional unlabeled or partially-labeled

data, our goal is to enhance model performance via maximizing the data utilization.

Nevertheless, deep-learning-based semi-supervised learning in the medical domain has

not drawn enough attention. One popular strategy is self-training [10, 11], which

propagates labels from the labeled to the unlabeled data, and then using the larger,

newly labeled set for training. However, in this approach, the error in the prediction

(pseudo-label) can be reinforced during the training. To alleviate this negative effect,

we exploit the fact that CT scans are high-resolution three-dimensional volumes which

can be represented by multiple planes, i.e., the axial, coronal, and sagittal planes.

Inspired by this multi-view property, we use the co-training [12] paradigm to generate

more accurate and robust pseudo-labels by utilizing the agreement among different

learners.

In addition to data-efficiency, we also rethink existing deep-learning-based strategies

in terms of knowledge-awareness. The inclusion of knowledge priors has been proved
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useful for image segmentation by reducing the negative effects induced by noise, low

contrast and objects’ complexity [5]. However, how to explicitly embed priors in

neural networks remain understudied. Therefore, we further discuss how to make deep

neural networks aware of such knowledge priors, so as to approach the real clinical

expertise. In the application of multi-organ segmentation, we sample various organs in

the abdomen across different patients and datasets, and observe consistent anatomical

similarities despite different imaging characteristics due to different scanners, image

acquisition protocols or different patient populations. In particular, we exploit the fact

that the size distributions of organs are similar across different patients, and formulate

the statistics of size distributions as an explicit prior. Under this formulation, the

prior can be easily embedded in the learning process by adding an additional objective

to constrain the size distributions across training samples.

For medical images in various forms (e.g., different modalities/phases), the identi-

fication of disease patterns usually requires combining multiple types of information.

For instance, the texture changes of pancreatic ductal adenocarcinoma can be quite

subtle in single-phase images. Consequently, in the real clinical practice, radiologists

are recommended to interpret multi-phase information for providing more accurate

diagnostics. Therefore, for the detection of pancreatic ductal adenocarcinoma, we

design a multi-phase learning framework which incorporates multi-phase information

by enabling the fusion of intermediate features from different imaging phases.

1.3 Thesis Outline

The organization of this thesis is outlined as follows:

In chapter 2, we provide an overview of the related techniques for medical image

analysis.

In chapter 3, we present the coarse-to-fine approaches for pancreas segmentation [13–

5



15].

In chapter 4, we extend the coarse-to-fine approaches for pancreatic cyst segmen-

tation by further introducing deep supervision [15–17].

In chapter 5, we adjust the coarse-to-fine framework for abdominal multi-organ

segmentation by proposing organ-attention networks and statistical fusion [18].

In chapter 6, we propose deep multi-planar co-training for semi-supervised 3D

abdominal multi-organ segmentation [19].

In chapter 7, we design a prior-aware neural network for partially-supervised

multi-organ segmentation [20].

In chapter 8, we develop a multi-phase learning algorithm for Pancreatic Ductal

Adenocarcinoma segmentation by proposing hyper-pairing network [21].

In chapter 9, we conclude the thesis and discuss potential future research directions.

1.4 Relevant Publications

The following publications constitute, or provide contexts and backgrounds for the

ideas in this dissertation (* indicates equal contribution):

1. Yuyin Zhou, Lingxi Xie, Wei Shen, Yan Wang, Elliot Fishman, Alan Yuille. A

Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans, MICCAI

2017

2. Qihang Yu, Lingxi Xie, Yan Wang, Yuyin Zhou, Elliot Fishman, Alan Yuille.

Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual

Cues for Small Organ Segmentation, CVPR 2018

3. Yuyin Zhou, Lingxi Xie, Elliot Fishman, Alan Yuille. Deep Supervision for

Pancreatic Cyst Segmentation in Abdominal CT Scans, MICCAI 2017
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4. Lingxi Xie, Qihang Yu, Yuyin Zhou, Yan Wang, Elliot Fishman, Alan Yuille.

Recurrent Saliency Transformation Network for Tiny Target Segmentation in

Abdominal CT Scans, IEEE transactions on medical imaging 2019

5. Yuyin Zhou*, Qihang Yu*, Yan Wang, Lingxi Xie, Wei Shen, Elliot Fishman

and Alan Yuille. 2D-Based Coarse-to-Fine Approaches for Small Target Seg-

mentation in Abdominal CT Scans, in Deep Learning and Convolutional Neural

Networks for Medical Image and Clinical Informatics, Advances in Computer

Vision and Pattern Recognition, Springer, 2019

6. Yan Wang*, Yuyin Zhou*, Wei Shen, Seyoun Park, Elliot Fishman, Alan

Yuille. Abdominal multi-organ segmentation with organ-attention networks and

statistical fusion, Medical Image Analysis 2019

7. Yuyin Zhou, Yan Wang, Peng Tang, Song Bai, Wei Shen, Elliot Fishman, Alan

Yuille. SemiSupervised 3D Multi-Organ Segmentation via Deep Multi-Planar

Co-Training, WACV 2019

8. Yuyin Zhou*, Zhe Li*, Song Bai, Chong Wang, Xinlei Chen, Mei Han, Elliot

Fishman, Alan Yuille. Prior-aware Neural Network for Partially-Supervised

Multi-Organ Segmentation, ICCV 2019

9. Yuyin Zhou, Yingwei Li, Zhishuai Zhang, Yan Wang, Alan Yuille, Seyoun

Park. HyperPairing Network for Multi-Phase Pancreatic Ductal Adenocarcinoma

Segmentation, MICCAI 2019

10. Yuyin Zhou, David Dreizin, Yingwei Li, Zhishuai Zhang, Yan Wang, Alan

Yuille. MultiScale Attentional Network for Multi-Focal Segmentation of Active

Bleed after Pelvic Fractures, MLMI 2019

11. Zhishuai Zhang, Yuyin Zhou, Wei Shen, Elliot Fishman, Alan Yuille. Lesion

Detection by Efficiently Bridging 3D Context, MLMI 2019
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12. Fengze Liu, Yuyin Zhou, Elliot Fishman, Alan Yuille. FusionNet: Incorporating

Shape and Texture for Abnormality Detection in 3D Abdominal CT Scans, MLMI

2019

13. Yan Wang, Yuyin Zhou, Peng Tang, Wei Shen, Elliot Fishman, Alan Yuille.

Training Multi-organ Segmentation Networks with Sample Selection by Relaxed

Upper Confident Bound, MICCAI 2018

14. Yingwei Li*, Zhuotun Zhu*, Yuyin Zhou, Yingda Xia, Wei Shen, Elliot Fish-

man, and Alan Yuille. Volumetric Medical Image Segmentation: A 3D Deep

Coarse-to-fine Framework and Its Adversarial Examples, in Deep Learning and

Convolutional Neural Networks for Medical Image Computing, Advances in

Computer Vision and Pattern Recognition, Springer, 2019

15. Yingda Xia*, Qihang Yu*, Wei Shen, Yuyin Zhou, Elliot Fishman, Alan Yuille.

Detecting Pancreatic Adenocarcinoma in Multi-phase CT Scans via Alignment

Ensemble, MICCAI 2020

16. Shuhao Fu, Yongyi Lu, Yan Wang, Yuyin Zhou, Wei Shen, Elliot Fishman, Alan

Yuille. Domain Adaptive Relational Reasoning for 3D Multi-Organ Segmentation,

MICCAI 2020

17. Yan Wang, Xu Wei, Fengze Liu, Jieneng Chen, Yuyin Zhou, Wei Shen, El-

liot Fishman, Alan Yuille. Deep Distance Transform for Tubular Structure

Segmentation in CT Scans, CVPR 2020

18. Cihang Xie, Jianyu Wang, Zhishuai Zhang,Yuyin Zhou, Lingxi Xie, Alan Yuille.

Adversarial Examples for Semantic Segmentation and Object Detection, ICCV

2017

19. Cihang Xie, Zhishuai Zhang,Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren,
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Alan Yuille. Improving Transferability of Adversarial Examples with Input

Diversity, CVPR 2019

20. Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie Yang, Cihang Xie,

Qihang Yu, Yuyin Zhou, Song Bai, Alan Yuille. Neural Architecture Search for

Lightweight Non-Local Networks, CVPR 2020

21. Lifeng Huang, Chengying Gao, Yuyin Zhou, Cihang Xie, Alan Yuille, Changqing

Zou, Ning Liu. UPC: Learning Universal Physical Camouflage Attacks on Object

Detectors, CVPR 2020

22. Yingwei Li, Song Bai, Yuyin Zhou, Cihang Xie, Zhishuai Zhang, Alan Yuille.

Learning Transferable Adversarial Examples via Ghost Networks, AAAI 2020

23. Song Bai, Yingwei Li, Yuyin Zhou, Qizhu Li, Philip HS Torr. Adversarial

Metric Attack and Defense for Person Re-identification, IEEE Transactions on

Pattern Analysis and Machine Intelligence 2020

Below lists other publications and researches I involved in during my Ph.D. study:

1. David Dreizin, Yuyin Zhou, Tina Chen, Guang Li, Alan Yuille, Ashley

McLenithan, Jonathan Morrison. Deep learning-based quantitative visualization

and measurement of extraperitoneal hematoma volumes in patients with pelvic

fractures, Journal of Trauma and Acute Care Surgery 2020

2. David Dreizin, Yuyin Zhou, Yixiao Zhang, Nikki Tirada, Alan Yuille. Perfor-

mance of a Deep Learning Algorithm for Automated Segmentation and Quan-

tification of Traumatic Pelvic Hematomas on CT, Journal of Digital Imaging

2019

3. Linda C Chu, Seyoun Park, Satomi Kawamoto, Yan Wang, Yuyin Zhou, Wei

Shen, Zhuotun Zhu, Yingda Xia, Lingxi Xie, Fengze Liu, Qihang Yu, Daniel
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F. Fouladi, Shahab Shayesteh, Eva Zinreich, Jefferson S. Graves, Karen M.

Horton, Alan Yuille, Ralph H. Hruban, Kenneth W. Kinzler, Bert Vogelstein,

Elliot Fishman. Application of Deep Learning to Pancreatic Cancer Detection:

Lessons Learned From Our Initial Experience, Journal of the American College

of Radiology 2019
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Chapter 2

Related Works

2.1 Deep Learning for Medical Image Analysis

Computer-aided diagnosis (CAD) is an important technique which can assist human

doctors in many clinical scenarios. An important prerequisite of CAD is medical

imaging analysis. As a popular and cheap way of medical imaging, contrast-enhanced

computed tomography (CECT) produces detailed images of internal organs, bones,

soft tissues and blood vessels. It is of great value to automatically segment organs

and/or soft tissues from these CT volumes for further diagnosis [16, 22–24]. To

capture specific properties of different organs, researchers often design individualized

algorithms for each of them. Typical examples include the liver [25, 26], the spleen [27],

the kidneys [28, 29], the lungs [30], the pancreas [31, 32], etc. Small organs (e.g.,

the pancreas) are often more difficult to segment, partly due to their low contrast

and large anatomical variability in size and (most often irregular) shape, as well as

the complicated and unpredictable background contents. In particular, the internal

neoplasms such as cysts [33] and tumors [34] can further change the anatomical

property of the pancreas, making it even more difficult to recognize both targets.

Compared to previous works which used conventional approaches for segmentation,

the progress of deep learning brought more powerful and efficient solutions. In

particular, convolutional neural networks (CNNs) have been widely applied to a
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wide range of vision tasks, such as image classification [35–37], object detection [38–

40], and semantic segmentation [41, 42]. Recurrent neural networks, as a related

class of networks, were first designed to process sequential data [43–45], and later

generalized to image classification [46] and scene labeling [47] tasks. In the area

of medical imaging analysis, in particular organ segmentation, different variants of

fully convolutional networks (FCNs) [41] have been shown to significantly outperform

conventional approaches, e.g., segmenting the liver [48], the lung [49], or the pancreas [8,

50]. Additionally, researchers have also investigated the more challenging scenarios,

such as liver lesion/tumor segmentation [51–53], brain lesion/tumor segmentation [6,

24], and general lesion detection [54–57]. Unlike these works, we aim to segment

pancreatic cystic neoplasms and pancreatic tumors in this thesis, which has been

rarely studied before.

The aforementioned studies are all focusing on single-organ segmentation. For

multi-organ segmentation, atlas-based approaches were adopted for many applications

[58–64]. The frameworks are usually problematic because 1) they are not able to

capture the large inter-subject variations of abdominal regions and 2) computational

time is tightly dependent on the number of atlases. Recently, learning-based approaches

with relatively large datasets have been introduced for multi-organ segmentation [65–

73]. Compared with multi-atlas-based approaches, CNNs based methods are generally

more efficient and accurate. Recently deep-learning-based multi-organ segmentation

has also been approached based on 3D FCNs [65, 74]. Later Roth et al. [66, 75]

proposed to either use a hierarchical approach or to integrate multi-scale and varying

context information for enhancing multi-organ segmentation.

We note that medical images differ from natural images in that data appear in a

volumetric form. To deal with these data, researchers either slice a 3D volume into

2D slices [18, 74, 76], or train a 3D network directly [6, 77–79] for the applications

of single- and multi- organ segmentation. In the latter case, 3D CNNs usually adopt
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the sliding-window strategy to avoid the out of memory problem, leading to high

time complexity induced by patch-based training and testing. Compared with 3D

CNNs, 2D CNNs based algorithms can be directly end-to-end trained using 2D deep

networks, which is less time-consuming. The trade-off between 2D and 3D approaches

is discussed in [80].

2.2 Coarse-to-fine Approaches

By comparison to the entire CT volume, the organs and neoplasm (e.g., pancreatic cyst)

considered in this thesis often occupy a relatively small area. As deep segmentation

networks such as FCN [41] are less accurate in depicting small targets, researchers

proposed two types of ideas to improve detection and/or segmentation performance.

The first type involved rescaling the image so that the target becomes comparable to

the training samples [81], and the second one considered to focus on a sub-region of the

image for each target to obtain higher accuracy in detection [82]. The coarse-to-fine

idea was also well studied in the computer vision area for saliency detection [83] or

semantic segmentation [84, 85]. In this thesis, we present coarse-to-fine frameworks

for different medical image segmentation applications. The core idea is to first use the

coarse stage to extract attentive regions, which is then fed to the fine stage to make

dense predictions. The two stages can be trained either in a step-wise manner or in

an end-to-end fashion.

Our method also belongs to attention-based methods. The attention mechanism

has been successfully applied to various fields. Wang et al. [86] propose to model

long-range relationships and design a non-local operator accordingly. Another type

of attention is known as channel-wise attention [87, 88], which aims to model the

relationships between different channels. In the field of medical image analysis, these

attention modules are also widely used for different applications [89–92]. Different

from these attention-based methods, in our approach we use a multi-stage framework

13



where the first stage explicitly extracts the attention, which is then used for facilitating

the segmentation in the second stage.

2.3 Semi-/Weakly- Supervised Medical Image Seg-
mentation

Currently, the most successful deep learning techniques for semantic segmentation

stem from a common forerunner, i.e., FCN [41]. Based on FCN, many recent ad-

vanced techniques have been proposed, such as DeepLab [93–95], PSPNet [96], Re-

fineNet [85], etc. However, these methods are based on supervised learning, hence

requiring a sufficient number of labeled training data to train. To cope with scenarios

where supervision is limited, researchers begin to investigate the weakly-supervised

setting [97–99], e.g., only bounding-boxes or image-level labels are available, and

the semi-supervised setting [97, 100], i.e., unlabeled data are used to enlarge the

training set. Papandreou et al. [97] propose EM-Adapt where the pseudo-labels of the

unknown pixels are estimated in the expectation step and standard SGD is performed

in the maximization step. Souly et al. [100] demonstrate the usefulness of generative

adversarial networks for semi-supervised segmentation.

In the medical imaging domain, it becomes even more intractable to acquire suffi-

cient labeled data due to the difficulty of annotation, as the annotation has to be done

by experts. Although fully-supervised methods (e.g., UNet [101], VoxResNet [102],

DeepMedic [6], 3D-DSN [48], HNN [8]) have achieved remarkable performance improve-

ment in tasks such as brain MR segmentation, abdominal single-organ segmentation

and multi-organ segmentation, semi- or weakly-supervised learning is still a far more

realistic solution. For these no-so-supervised settings [103], the most commonly

used techniques include graph-based methods [104, 105], self-training [106, 107],

co-training [12], multi-view learning [108], etc.

Graph-based semi-supervised methods define a graph where the nodes are labeled
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and unlabeled examples in the dataset, and edges reflect the similarity of examples.

These methods have been widely adopted in non-deep-learning based semi-supervised

learning algorithms in the biomedical imaging domain [109–111].

In self-training, the classifier is iteratively re-trained using the training set aug-

mented by adding the unlabeled data with their own predictions. The procedure is

repeated until some convergence criteria are satisfied. In such case, one can imagine

that a classification mistake can reinforce itself. Co-training [12] assumes that (1)

features can be split into two independent sets and (2) each sub-feature set is sufficient

to train a good classifier. During the learning process, each classifier is retrained with

the additional training examples given by the other classifier. Co-training utilizes

multiple sets of independent features which describe the same data, and therefore

tends to yield more accurate and robust results than self-training [112]. Multi-view

learning [108], in general, defines learning paradigms that utilize the agreement among

different learners. Co-training is one of the earliest schemes for multi-view learning.

Built upon deep learning, self-training and co-training have witnessed good perfor-

mances for different computer vision applications [11, 106, 107, 113]. In the medical

imaging domain, similar attempts have been proved useful for semi-/weakly- super-

vised medical image segmentation. For instance, Bai et al. [10] propose an EM-based

iterative method, where a CNN is alternately trained on labeled and post-processed

unlabeled sets. In [114], supervised and unsupervised adversarial costs are involved

to address semi-supervised gland segmentation. To make the learned models more

robust, consistency-based methods [115–117] and uncertainty-driven approaches [118,

119] are proposed for different medical image classification and segmentation tasks.

DeepCut [120] shows that bounding-boxes can be utilized by performing an iterative op-

timization scheme like [97] to benefit medical image segmentation. Kervadec et al. [121]

further propose a constrained CNN method which suggests that weak annotations

such as dots, scribbles can be also utilized for enhancing prostate segmentation.
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2.4 Knowledge Priors in Deep Learning

The methods above are generally based on CNNs, which make them fail to capture the

anatomical priors [122]. The inclusion of priors in medical imaging could potentially

have much more impact compared with their usage in natural images since anatomical

objects in medical images are naturally more constrained in terms of shape, loca-

tion, size, etc. Earlier works suggest to employ priors through adjacency [123] and

boundary [8, 124] conditions. Another popular strategy to explicitly employ prior

structure for biomedical image segmentation is to use a conditional random field as a

post-processing step [8, 24, 94, 125]. In [126, 127], shape priors are incorporated in

neural networks by encouraging the computed segmentation to be similar to both the

learned shape and the ground-truth. These approaches add priors simply by correcting

segmentations produced by standard CNNs. Different from these studies, the recent

study [122] demonstrates that priors can be learned by a generative model instead.

But this method can incur additional computational overhead. Kervadec et al. [121]

propose that directly imposing inequality constraints on sizes is also an effective way

of incorporating anatomical priors. In this thesis, we propose to learn from partial

annotations by embedding the abdominal region statistics in the training objective,

which requires no additional training budgets.
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Chapter 3

Coarse-to-Fine Approaches for
Pancreas Segmentation

Deep neural networks have been widely adopted for automatic organ segmentation

from abdominal CT scans. However, the segmentation accuracy of small organs (e.g.,

the pancreas) is sometimes below satisfaction, arguably because deep networks are

easily disrupted by the complex and variable background regions which occupy a

large fraction of the input volume. In this chapter, we propose two coarse-to-fine

mechanisms which use the prediction from the first (coarse) stage to shrink the input

region for the second (fine) stage. More specifically, the two stages in the first method

are trained individually in a step-wise manner, so that the entire input region and the

region cropped according to the bounding box are treated separately. While the second

method inserts a saliency transformation module between the two stages so that the

segmentation probability map from the previous iteration can be repeatedly converted

as spatial weights to the current iteration. In training, it allows joint optimization

over both stages. In testing, it propagates multi-stage visual information throughout

iterations to improve the segmentation accuracy. Experiments are performed on

several CT datasets, including the NIH pancreas dataset and the JHMI multi-organ

dataset, which confirms the effectiveness of our approach.
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NIH Case #001

Figure 3-1. A typical example from the NIH pancreas segmentation dataset [7] (best
viewed in color). We highlight the pancreas in red seen from three different viewpoints. It
is a relatively small organ compared to the entire abdominal CT volume.

3.1 Introduction

This chapter focuses on small organ (e.g., the pancreas) segmentation from abdominal

CT scans, which is an important prerequisite for enabling computers to assist human

doctors for clinical purposes. This problem falls into the research area named medical

imaging analysis. Recently, great progress has been brought to this field by the fast

development of deep learning, especially convolutional neural networks [35, 41]. Many

conventional methods, such as the graph-based segmentation approaches [29] or those

based on handcrafted local features [32], have been replaced by deep segmentation

networks, which typically produce a higher segmentation accuracy [7, 18, 19, 101,

128].

Segmenting small structures (e.g., the pancreas or neoplasms) from a CT scan

is often challenging. As the target generally occupies a small part of the input data

(e.g., less than 1.5% in a 2D image, see Figure 3-1), deep segmentation networks

such as FCN [41] and DeepLab [42] can be easily confused by the background region,

which may contain complicated and variable contents. This motivates us to propose

coarse-to-fine approaches, in which the coarse stage provides a rough localization,

based on which the fine stage then performs accurate segmentation.
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We propose two coarse-to-fine approaches in this chapter. In the first approach,

we use the predicted segmentation mask to shrink the input region. With a relatively

smaller input region (e.g., a bounding box defined by the mask), it is straightforward

to achieve more accurate segmentation. At the training stage, we fix the input

region generated from the ground-truth annotation, and train two deep segmentation

networks, i.e., a coarse-scaled one and a fine-scaled one, to deal with the entire

input region and the region cropped according to the bounding box, respectively. At

the testing stage, the network parameters remain unchanged, and the coarse-scaled

network was first used to obtain the rough position of the small target. Then the fine-

scaled network was executed several times and the segmentation mask was updated

iteratively until convergence. The iterative process can be formulated as a fixed-point

model [129].

In spite of the state-of-the-art performance achieved for pancreas segmentation,

this method suffers from inconsistency between its training and testing flowcharts, As

in our first approach, the training phase dealt with coarse and fine stages individually

and did not minimize a global energy function, but the testing phase assumed that

these two stages can cooperate with each other in an iterative process. From another

perspective, this also makes it difficult for multi-stage visual cues to be incorporated

for enhancing the segmentation performance, e.g., the previous segmentation mask

which carries rich information is discarded except for the bounding box. In order to

embed consistency between training and testing flowcharts, which is to say, we aim to

minimize a global energy function in coarse and fine stages simultaneously during the

training phase. To this end, we propose a Recurrent Saliency Transformation Network

(RSTN) in our second approach. The chief innovation is to relate the coarse and

fine stages with a saliency transformation module, which repeatedly transforms the

segmentation probability map from previous iterations as spatial priors for the current

iteration. This brings us two-fold advantages over the first method. First, in the

19



training phase, the coarse-scaled and fine-scaled networks are optimized jointly, so that

the segmentation ability of each of them gets improved. Second, in the testing phase,

the segmentation mask of each iteration is preserved and propagated throughout

iterations, enabling multi-stage visual cues to be incorporated towards more accurate

segmentation.

We show the superiority of our approaches on the NIH pancreas segmentation

dataset [7] and the JHMI multi-organ dataset, which guarantees its efficiency and

reliability in real clinical applications.

This chapter summarizes our previous works [13, 14]. The remainder of this chapter

is organized as follows. Section 3.2 describes the proposed step-wise coarse-to-fine

approach, and Section 3.3 presents our proposed end-to-end coarse-to-fine approach.

After experiments are shown in Sections 3.4 and 3.5, we draw our conclusions in

Section 3.6.

3.2 A Step-Wise Coarse-to-Fine Approach for Med-
ical Image Segmentation

We investigate the problem of segmenting an organ from abdominal CT scans. Let a

CT image be a 3D volume X of size W ×H × L which is annotated with a binary

ground-truth segmentation Y where yi = 1 indicates a foreground voxel. The goal

of our work is to produce a binary output volume Z of the same dimension. Denote

Y and Z as the set of foreground voxels in the ground-truth and prediction, i.e.,

Y = {i | yi = 1} and Z = {i | zi = 1}. The accuracy of segmentation is evaluated by

the Dice-Sørensen coefficient (DSC): DSC(Y ,Z) = 2×|Y∩Z|
|Y|+|Z| . This metric falls in the

range of [0, 1] with 1 implying perfect segmentation.
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3.2.1 Deep Segmentation Networks

Consider a segmentation model M : Z = f(X; Θ), where Θ denotes the model

parameters, and the loss function is written as L(Z, Y). In the context of a deep

segmentation network, we optimize L with respect to the network weights Θ by

gradient back-propagation. As the foreground region is often very small, we follow [78]

to design a DSC-loss layer to prevent the model from being heavily biased towards

the background class. We slightly modify the DSC of two voxel sets A and B,

DSC(A,B) = 2×|A∩B|
|A|+|B| , into a loss function between the ground-truth mask Y and the

predicted mask Z, i.e., L(Z, Y) = 1− 2×
∑︁

i
ziyi∑︁

i
zi+

∑︁
i
yi

. Note that this is a “soft” definition

of DSC, and it is equivalent to the original form if all zi’s are either 0 or 1. The

gradient computation is straightforward: ∂L(Z,Y)
∂zj

= −2× yj(∑︁
i
zi+

∑︁
i
yi)−

∑︁
i
ziyi

(∑︁
i
zi+

∑︁
i
yi)2 .

We train 2D deep networks for 3D segmentation1. Each 3D volume X is sliced

along three axes, the coronal, sagittal and axial views, and these 2D slices are denoted

by XC,w (w = 1, 2, . . . , W ), XS,h (h = 1, 2, . . . , H) and XA,l (l = 1, 2, . . . , L), where

the subscripts C, S and A stand for coronal, sagittal and axial, respectively. On each

axis, an individual 2D-FCN [41] on a 16-layer VGGNet [36] is trained. In other words,

we train three 2D-FCN models MC, MS and MA to perform segmentation through

three views individually (images from three views are quite different). In testing, the

segmentation results from three views are fused via majority voting. Both multi-slice

segmentation (3 neighboring slices are combined as a basic unit in training and testing)

and multi-axis fusion (majority voting over three axes) are performed to incorporate

pseudo-3D information into segmentation.

3.2.2 Fixed-Point Optimization

The organs and neoplasms investigated in this chapter (e.g., the pancreas) are relatively

small. In each 2D slice, the fraction of the foreground pixels is often smaller than
1Please see Section 3.4.3 for the comparison to 3D networks.
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Input Image

NIH Case #09

Segmentation Using
the Entire Image

Segmentation Using
the Bounding Box

DSC = 42.65% DSC = 78.44%

Figure 3-2. Segmentation results with different input regions (best viewed in color),
either using the entire image or the bounding box (the red frame). Red, green and yellow
indicate the prediction, ground-truth and overlapped pixels, respectively.

1.5%. It was observed [7] that deep segmentation networks such as FCN [41] produce

less satisfying results when detecting small organs, arguably because the network

is easily disrupted by the varying contents in the background regions. Much more

accurate segmentation can be obtained by using a smaller input region around the

region-of-interest. A typical example is shown in Figure 3-2.

This inspires us to make use of the predicted segmentation mask to shrink the input

region. We introduce a transformation function r(X, Z⋆) which generates the input

region given the current segmentation Z⋆. We rewrite the model as Z = f(r(X, Z⋆) ; Θ),

and the loss function is L(f(r(X, Z⋆) ; Θ) , Y). Note that the segmentation mask (Z or

Z⋆) appears in both the input and output of Z = f(r(X, Z⋆) ; Θ). This is a fixed-point

model, and we apply the approach described in [129] for optimization, i.e., finding a

steady-state solution for Z.

In training, the ground-truth annotation Y is used as the input mask Z⋆. We

train two sets of models (each set contains three models for different views) to deal

with different input sizes. The coarse-scaled models are trained on those slices on

which the pancreas occupies at least 100 pixels (approximately 25mm2 in a 2D slice,

our approach is not sensitive to this parameter) so as to prevent the model from being
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heavily impacted by the background. For the fine-scaled models, we crop each slice

according to the minimal 2D box covering the pancreas, add a frame around it, and

fill it up with the original image data. The top, bottom, left and right margins of the

frame are random integers sampled from {0, 1, . . . , 60}. This strategy, known as data

augmentation, helps to regularize the network and prevent over-fitting.

We initialize both networks using the FCN-8s model [41] pre-trained on the

PascalVOC image segmentation task. The coarse-scaled model is fine-tuned with a

learning rate of 10−5 for 80,000 iterations, and the fine-scaled model undergoes 60,000

iterations with a learning rate of 10−4. Each mini-batch contains one training sample

(a 2D image sliced from a 3D volume).

In testing, we use an iterative process to find a steady-state solution for Z =

f(r(X, Z⋆) ; Θ). At the beginning, Z⋆ is initialized as the entire 3D volume, and we

compute the coarse segmentation Z(0) using the coarse-scaled models. In each of the

following T iterations, we slice the predicted mask Z(t−1), find the smallest 2D box to

cover all predicted foreground pixels in each slice, add a 30-pixel-wide frame around

it (this is the mean value of the random distribution used in training), and use the

fine-scaled models to compute Z(t). The iteration terminates when a fixed number

of iterations T is reached, or the similarity between successive segmentation results

(Z(t−1) and Z(t)) is larger than a given threshold R. The similarity is defined as the

inter-iteration DSC, namely d(t) = DSC
(︂
Z(t−1), Z(t)

)︂
= 2×

∑︁
i
z

(t−1)
i z

(t)
i∑︁

i
z

(t−1)
i +

∑︁
i
z

(t)
i

. The testing

stage is illustrated in Figure 3-3 and described in Algorithm 1.

3.3 An End-to-End Coarse-to-Fine Approach for
Medical Image Segmentation

The step-wise coarse-to-fine approach is delicately designed for tiny target segmentation,

but lacks global optimization of both the coarse and fine networks in the training

stage. This motivates us to connect these two networks with a saliency transformation
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Figure 3-3. Illustration of the testing process (best viewed in color). Only one iteration
is shown here. In practice, there are at most 10 iterations.

module, which leads to our end-to-end coarse-to-fine approach.

3.3.1 Recurrent Saliency Transformation Network

Following the step-wise coarse-to-fine approach, we also train an individual model for

each of the three viewpoints. Without loss of generality, we consider a 2D slice along

the axial view, denoted by XA,l. Our goal is to infer a binary segmentation mask ZA,l,

which is achieved by first computing a probability map PA,l = f [XA,l; θ], where f [·; θ]

is a deep segmentation network with θ being network parameters, and then binarizing

PA,l into ZA,l using a fixed threshold of 0.5, i.e., ZA,l = I[PA,l ⩾ 0.5].

In order to assist segmentation with the probability map, we introduce PA,l as

a latent variable. We introduce a saliency transformation module, which takes the

probability map to generate an updated input image, i.e., IA,l = XA,l ⊙ g(PA,l; η), and
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Algorithm 1 Fixed-Point Model for Segmentation
1: Input: the testing volume X, coarse-scaled models MC, MS and MA, fine-scaled

models MF
C, MF

S and MF
A, threshold R, maximal rounds in iteration T .

2: Initialization: using MC, MS and MA to generate Z(0) from X;
3: for t = 1, 2, . . . , T do
4: Using MF

C, MF
S and MF

A to generate Z(t) from Z(t−1);
5: if DSC

(︂
Z(t−1), Z(t)

)︂
⩾ R then

6: break;
7: end if
8: end for
9: Output: the final segmentation Z⋆ = Z(t).

uses the updated input IA,l to replace XA,l. Here g[·; η] is the transformation function

with parameters η, and ⊙ denotes element-wise product, i.e., the transformation

function adds spatial weights to the original input image. Thus, the segmentation

process becomes:

PA,l = f [XA,l ⊙ g(PA,l; η) ; θ]. (3.1)

This is a recurrent neural network. Note that the saliency transformation function

g[·, η] needs to be differentiable so that the entire recurrent network can be optimized

in an end-to-end manner. As XA,l and PA,l share the same spatial dimensionality, we

set g[·, η] to be a size-preserved convolution, which allows the weight added to each

pixel to be determined by the segmentation probabilities in a small neighborhood

around it. As we will show in the experimental section (see Figure 3-7), the learned

convolutional kernels are able to extract complementary information to help the next

iteration.

To optimize Eqn. (3.1), we unfold the recurrent network into a plain form (see

Figure 3-4). Given an input image XA,l and an integer T which is the maximal number

of iterations, we update I(t)
A,l and P(t)

A,l, t = 0, 1, . . . , T :

I(t)
A,l = XA,l ⊙ g

(︂
P(t−1)

A,l ; η
)︂
, (3.2)

P(t)
A,l = f

[︂
I(t)

A,l; θ
]︂
. (3.3)
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Figure 3-4. We formulate our approach into a recurrent network, and unfold it for
optimization and inference.

Note that the original input image XA,l does not change, and the parameters θ and η

are shared by all iterations. At t = 0, we directly set I(0)
A,l = XA,l.

When segmentation masks P(t)
A,l (t = 0, 1, . . . , T − 1) are available for reference,

deep networks benefit considerably from a shrunk input region especially when the

target organ is very small. Thus, we define a cropping function Crop
[︂
·; P(t)

A,l

]︂
, which

takes P(t)
A,l as the reference map, binarizes it into Z(t)

A,l = I
[︂
P(t)

A,l ⩾ 0.5
]︂
, finds the minimal

rectangle covering all the activated pixels, and adds a K-pixel-wide margin (padding)

around it. We fix K to be 20; our algorithm is not sensitive to this parameter.

Finally note that I(0)
A,l, the original input (the entire 2D slice), is much larger than

the cropped inputs I(t)
A,l for t > 0. We train two FCN’s to deal with such a major

difference in input data. The first one is named the coarse-scaled segmentation network,

which is used only in the first iteration. The second one, the fine-scaled segmentation

network, takes the charge of all the remaining iterations. We denote their parameters

by θC and θF, respectively. These two FCN’s are optimized jointly.

We compute a DSC loss term on each probability map P(t)
A,l, t = 0, 1, . . . , T , and

denote it by L
{︂
YA,l, P(t)

A,l

}︂
. Here, YA,l is the ground-truth segmentation mask, and

L{Y, P} = 1− 2×
∑︁

i
YiPi∑︁

i
Yi+Pi

is based on the soft version of DSC [78]. Our goal is to
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Figure 3-5. Illustration of the training process (best viewed in color). We display an
input image along the axial view which contains 3 neighboring slices. To save space, we
only plot the coarse stage and the first iteration in the fine stage.

minimize the overall loss:

L =
T∑︂

t=0
λt · L

{︂
Y(t)

A,l, Z(t)
A,l

}︂
. (3.4)

This leads to joint optimization over all iterations, which involves network parameters

θC, θF, and transformation parameters η. {λt}T
t=0 controls the tradeoff among all

loss terms. We set 2λ0 = λ1 = . . . = λT = 2/ (2T + 1) so as to encourage accurate

fine-scaled segmentation.

3.3.2 Training and Testing

The training phase is aimed at minimizing the loss function L, defined in

Eqn. (3.4), which is differentiable with respect to all parameters. In the early training

stages, the coarse-scaled network cannot generate reasonable probability maps. To

prevent the fine-scaled network from being confused by inaccurate input regions, we

use the ground-truth mask YA,l as the reference map. After a sufficient number of
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Algorithm 2 The Testing Phase for RSTN
Require: input volume X, viewpoint V = {C, S, A}
Require: parameters θC

v
Require: θF

v and ηv, v ∈ V ;
Require: max number of iterations T , threshold thr;

t← 0, I(0)
v

← X, v ∈ V ;
P(0)

v,l ← f
[︂
I(0)

v,l ; θC
v

]︂
, v ∈ V , ∀l;

P(0) = P(0)
C +P(0)

S +P(0)
A

3 , Z(0) = I
[︂
P(0) ⩾ 0.5

]︂
;

repeat
t← t + 1;
I(t)

v,l ← Xv,l ⊙ g
(︂
P(t−1)

v,l ; η
)︂
, v ∈ V , ∀l;

P(t)
v,l ← f

[︂
Crop

[︂
I(t)

v,l; P(t−1)
v,l

]︂
; θF

v

]︂
, v ∈ V , ∀l;

P(t) = P(t)
C +P(t)

S +P(t)
A

3 , Z(t) = I
[︂
P(t) ⩾ 0.5

]︂
;

until t = T or DSC
{︂
Z(t−1), Z(t)

}︂
⩾ thr

return Z← Z(t).

training, we resume using P(t)
A,l instead of YA,l. In Section 3.4.3, we will see that this

“fine-tuning” strategy improves segmentation accuracy considerably.

Due to the limitation in GPU memory, in each mini-batch containing one training

sample, we set T to be the maximal integer (not larger than 5) so that we can fit

the entire framework into the GPU memory. The overall framework is illustrated in

Figure 3-5. As a side note, we find that setting T ≡ 1 also produces high accuracy,

suggesting that major improvement is brought by joint optimization.

The testing phase follows the flowchart described in Algorithm 2. There are two

minor differences from the training phase. First, as the ground-truth segmentation

mask YA,l is not available, the probability map P(t)
A,l is always taken as the reference

map for image cropping. Second, the number of iterations is no longer limited by the

GPU memory, as the intermediate outputs can be discarded on the way. In practice, we

terminate our algorithm when the similarity of two consecutive predictions, measured

by DSC
{︂
Z(t−1), Z(t)

}︂
= 2×

∑︁
i
Z

(t−1)
i Z

(t)
i∑︁

i
Z

(t−1)
i +Z

(t)
i

, reaches a threshold thr, or a fixed number (T )

of iterations are executed. We will discuss these parameters in Section 3.4.3.
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3.4 Pancreas Segmentation Experiments

3.4.1 Dataset and Evaluation

We evaluate our approach on the NIH pancreas segmentation dataset [7], which

contains 82 contrast-enhanced abdominal CT volumes. The resolution of each scan is

512× 512× L, where L ∈ [181, 466] is the number of slices along the long axis of the

body. The distance between neighboring voxels ranges from 0.5mm to 1.0mm.

Following the standard cross-validation strategy, we split the dataset into 4 fixed

folds, each of which contains approximately the same number of samples. We apply

cross validation, i.e., training the models on 3 out of 4 subsets and testing them

on the remaining one. We measure the segmentation accuracy by computing the

Dice-Sørensen coefficient (DSC) for each sample, and report the average and standard

deviation over all 82 cases.

3.4.2 Evaluation of the Step-Wise Coarse-to-Fine Approach

We initialize both networks using the FCN-8s model [41] pre-trained on the PascalVOC

image segmentation task. The coarse-scaled model is fine-tuned with a learning rate

of 10−5 for 80,000 iterations, and the fine-scaled model undergoes 60,000 iterations

with a learning rate of 10−4. Each mini-batch contains one training sample (a 2D

image sliced from a 3D volume).

We first evaluate the baseline (coarse-scaled) approach. Using the coarse-scaled

models trained from three different views (i.e., MC, MS and MA), we obtain 66.88%±

11.08%, 71.41% ± 11.12% and 73.08% ± 9.60% average DSC, respectively. Fusing

these three models via majority voting yields 75.74% ± 10.47%, suggesting that

complementary information is captured by different views. This is used as the starting

point Z(0) for the later iterations.

To apply the fixed-point model for segmentation, we first compute d(t) to observe
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Method Mean DSC # Iterations Max
DSC

Min
DSC

Roth et al., MICCAI’15 [7] 71.42± 10.11 − 86.29 23.99
Roth et al., MICCAI’16 [8] 78.01± 8.20 − 88.65 34.11
Coarse Segmentation 75.74± 10.47 − 88.12 39.99
After 1 Iteration 82.16± 6.29 1 90.85 54.39
After 2 Iterations 82.13± 6.30 2 90.77 57.05
After 3 Iterations 82.09± 6.17 3 90.78 58.39
After 5 Iterations 82.11± 6.09 5 90.75 62.40
After 10 Iterations 82.25± 5.73 10 90.76 61.73
After dt > 0.90 82.13± 6.35 1.83± 0.47 90.85 54.39
After dt > 0.95 82.37± 5.68 2.89± 1.75 90.85 62.43
After dt > 0.99 82.28± 5.72 9.87± 0.73 90.77 61.94
Best among All Iterations 82.65± 5.47 3.49± 2.92 90.85 63.02
Oracle Bounding Box 83.18± 4.81 − 91.03 65.10

Table 3-I. Segmentation accuracy (measured by DSC, %) reported by different approaches.
We start from the initial (coarse) segmentation Z(0), and explore different terminating
conditions, including a fixed number of iterations and a fixed threshold of inter-iteration
DSC. The last two lines show two upper-bounds of our approach, i.e., “Best of All Iterations”
means that we choose the highest DSC value over 10 iterations, and “Oracle Bounding
Box” corresponds to using the ground-truth segmentation to generate the bounding box
in testing. We also compare our results with the state-of-the-art [7, 8], demonstrating our
advantage over all statistics.

the convergence of the iterations. After 10 iterations, the average d(t) value over all

samples is 0.9767, the median is 0.9794, and the minimum is 0.9362. These numbers

indicate that the iteration process is generally stable.

Now, we investigate the fixed-point model using the threshold R = 0.95 and the

maximal number of iterations T = 10. The average DSC is boosted by 6.63%, which

is impressive given the relatively high baseline (75.74%). This verifies our hypothesis,

i.e., a fine-scaled model depicts a small organ more accurately.

We also summarize the results generated by different terminating conditions in

Table 3-I. We find that performing merely 1 iteration is enough to significantly boost

the segmentation accuracy (+6.42%). However, more iterations help to improve

the accuracy of the worst case, as for some challenging cases (e.g., Case #09, see
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Input Image Initial Segmentation After 1st Iteration After 2nd Iteration

NIH Case #03 DSC = 57.66% DSC = 81.39% DSC = 81.45%

Input Image Initial Segmentation After 1st Iteration After 2nd Iteration

NIH Case #09 DSC = 42.65% DSC = 54.39% DSC = 57.05%

Final (3 Iterations)

DSC = 82.19%

Final (10 Iterations)

DSC = 76.82%

Figure 3-6. Examples of segmentation results throughout the iteration process (best
viewed in color). We only show a small region covering the pancreas in the axial view.
The terminating condition is d(t) ⩾ 0.95. Red, green and yellow indicate the prediction,
ground-truth and overlapped regions, respectively.

Figure 3-6), the missing parts in coarse segmentation are recovered gradually. The

best average accuracy comes from setting R = 0.95. Using a larger threshold (e.g.,

0.99) does not produce accuracy gain, but requires more iterations and, consequently,

more computation at the testing stage. In average, it takes less than 3 iterations

to reach the threshold 0.95. On a modern GPU, we need about 3 minutes on each

testing sample, comparable to recent work [8], but we report much higher segmentation

accuracy (82.37% vs. 78.01%).

As a diagnostic experiment, we use the ground-truth (oracle) bounding box of each

testing case to generate the input volume. This results in a 83.18% average accuracy

(no iteration is needed in this case). By comparison, we report a comparable 82.37%

average accuracy, indicating that our approach has almost reached the upper-bound

of the current deep segmentation network.

We also compare our segmentation results with the state-of-the-art approaches.

Using DSC as the evaluation metric, our approach outperforms the recent published
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Model Average Max Min
3× 3 kernels in saliency transformation 83.47± 5.78 90.63 57.85
1× 1 kernels in saliency transformation 82.85± 6.68 90.40 53.44
5× 5 kernels in saliency transformation 83.64± 5.29 90.35 66.35
Two-layer saliency transformation (3× 3 kernels) 83.93± 5.43 90.52 64.78
Fine-tuning with noisy data (3× 3 kernels) 83.99± 5.09 90.57 65.05

Table 3-II. Accuracy (DSC, %) comparison of different settings of our approach. Please
see the texts in Section 3.4.3 for detailed descriptions of these variants.

work [8] significantly. The average accuracy over 82 samples increases remarkably

from 78.01% to 82.37%, and the standard deviation decreases from 8.20% to 5.68%,

implying that our approach are more stable. We also implement a recently published

coarse-to-fine approach [130], and get a 77.89% average accuracy. In particular, [8]

reported 34.11% for the worst case (some previous works [31, 32] reported even

lower numbers), and this number is boosted considerably to 62.43% by our approach.

We point out that these improvements are mainly due to the fine-tuning iterations.

Without it, the average accuracy is 75.74%, and the accuracy on the worst case

is merely 39.99%. Figure 3-6 shows examples of how the segmentation quality is

improved in two challenging cases.

3.4.3 Evaluation of the End-to-End Coarse-to-Fine Approach

Different Settings. We initialize the up-sampling layers in FCN-8s model [41]

pre-trained on PascalVOC [131] with random weights, set the learning rate to be 10−4

and run 80,000 iterations. Different options are evaluated, including using different

kernel sizes in saliency transformation, and whether to fine-tune the models using

the predicted segmentations as reference maps (see the description in Section 3.3.2).

Quantitative results are summarized in Table 3-II.

As the saliency transformation module is implemented by a size-preserved con-

volution (see Section 3.3.1), the size of convolutional kernels determines the range
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that a pixel can use to judge its saliency. In general, a larger kernel size improves

segmentation accuracy (3× 3 works significantly better than 1× 1), but we observe

the marginal effect: the improvement of 5× 5 over 3× 3 is limited. As we use 7× 7

kernels, the segmentation accuracy is slightly lower than that of 5 × 5. This may

be caused by the larger number of parameters introduced to this module. Another

way of increasing the receptive field size is to use two convolutional layers with 3× 3

kernels. This strategy, while containing a smaller number of parameters, works even

better than using one 5× 5 layer. But, we do not add more layers, as the performance

saturates while computational costs increase.

As described in Section 3.3.2, we fine-tune these models with images cropped from

the coarse-scaled segmentation mask. This is to adjust the models to the testing phase,

in which the ground-truth mask is unknown, so that the fine-scaled segmentation

needs to start with, and be able to revise the coarse-scaled segmentation mask. We

use a smaller learning rate (10−6) and run another 40,000 iterations. This strategy

not only reports 0.52% overall accuracy gain, but also alleviates over-fitting.

In summary, all these variants produce higher accuracy than our step-wise coarse-

to-fine approach (82.37%), which verifies that the major contribution of our end-to-end

approach comes from our recurrent framework which enables joint optimization. In

the later experiments, we inherit the best variant learned from this section, including

in a large-scale multi-organ dataset (see Section 3.5). That is to say, we use two

3× 3 convolutional layers for saliency transformation, and fine-tune the models with

coarse-scaled segmentation. This setting produces an average accuracy of 84.50%, as

shown in Table 3-III.

Performance Comparison. We show that our end-to-end coarse-to-fine approach

works better than the step-wise coarse-to-fine approach. As shown in Table 3-III, the

average improvement over 82 cases is 2.13± 2.67%. In addition, the student’s t-test
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Approach Average Max Min
Roth et al. [7] 71.42± 10.11 86.29 23.99
Roth et al. [8] 78.01± 8.20 88.65 34.11
Zhang et al. [130] 77.89± 8.52 89.17 43.67
Roth et al. [8] 81.27± 6.27 88.96 50.69
Cai et al. [50] 82.4± 6.7 90.1 60.0
Our Step-Wise Approach 82.37± 5.68 90.85 62.43
Our End-to-End Approach 84.50± 4.97 91.02 62.81

Table 3-III. Accuracy (DSC, %) comparison between our approach and the state-of-the-
arts on the NIH pancreas segmentation dataset [7].

suggests statistical significance (p = 3.62× 10−8) of our improvement. A case-by-case

study reveals that our end-to-end approach reports higher accuracies on 67 out of 82

cases, with the largest advantage being +17.60% and the largest deficit being merely

−3.85%. We analyze the sources of improvement in Section 3.4.4.

We briefly discuss the advantages and disadvantages of using 3D networks. 3D

networks capture richer contextual information, but also require training more param-

eters. Our 2D approach makes use of 3D contexts more efficiently. At the end of each

iteration, predictions from three views are fused, and thus the saliency transformation

module carries this information to the next iteration. We implement VNet [78], and

obtain an average accuracy of 83.18% with a 3D ground-truth bounding box provided

for each case. Without the ground-truth, a sliding-window process is required which

is really slow – an average of 5 minutes on a Titan-X Pascal GPU. In comparison,

our end-to-end approach needs 1.3 minutes, slower than our step-wise approach (0.9

minutes), but faster than other 2D approaches [7, 8] (2–3 minutes).

3.4.4 Diagnosis

Joint Optimization and Multi-Stage Cues. Our end-to-end approach enables

joint training, which improves both the coarse and fine stages individually. We denote

the two networks trained by our step-wise approach by IC and IF, and similarly, those
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Figure 3-7. Visualization of how recurrent saliency transformation works in coarse-to-fine
segmentation (best viewed in color). Segmentation accuracy is largely improved by making
use of the probability map from the previous iteration to help the current iteration. Note
that the three weight maps capture different visual cues, with two of them focused on the
foreground region, and the remaining one focused on the background region.

trained in our approach by JC and JF, respectively. In the coarse stage, IC reports

75.74% and JC reports 78.23%. In the fine stage, applying JF on top of the output of

IC gets 83.80%, which is considerably higher than 82.37% (IF on top of IC) but lower

than 84.50% (JF on top of JC). Therefore, we conclude that both the coarse-scaled

and fine-scaled networks benefit from joint optimization. A stronger coarse stage

provides a better starting point, and a stronger fine stage improves the upper-bound.

In Figure 3-7, we visualize how the recurrent network assists segmentation by

incorporating multi-stage visual cues. It is interesting to see that in saliency transfor-

mation, different channels deliver complementary information, i.e., two of them focus

on the target organ, and the remaining one adds most weights to the background

region. Similar phenomena happen in the models trained in different viewpoints and

different folds. This reveals that, except for foreground, background and boundary

also contribute to visual recognition [132].
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Convergence. We study convergence, which is a very important criterion to judge

the reliability of our end-to-end approach. We choose the best model reporting an

average accuracy of 84.50%, and record the inter-iteration DSC throughout the testing

process: d(t) = DSC
{︂
Z(t−1), Z(t)

}︂
= 2×

∑︁
i
Z

(t−1)
i Z

(t)
i∑︁

i
Z

(t−1)
i +Z

(t)
i

.

After 1, 2, 3, 5 and 10 iterations, these numbers are 0.9037, 0.9677, 0.9814, 0.9908

and 0.9964 for our approach, and 0.8286, 0.9477, 0.9661, 0.9743 and 0.9774 for our

step-wise approach, respectively. Each number reported by our end-to-end approach

is considerably higher than that by the step-wise approach. The better convergence

property provides us with the opportunity to set a more strict terminating condition,

e.g., using thr = 0.99 rather than thr = 0.95.

When the threshold is increased from 0.95 to 0.99 in our end-to-end approach, 80

out of 82 cases converge (in an average of 5.22 iterations), and the average accuracy is

improved from 83.93% to 84.50%. On a Titan-X Pascal GPU, one iteration takes 0.2

minutes, so using thr = 0.99 requires an average of 1.3 minutes in each testing case.

The Over-Fitting Issue. Finally, we investigate the over-fitting issue of our end-to-

end approach by making use of oracle information in the testing process. We use the

ground-truth bounding box on each slice, which is used to crop the input region in

every iteration. Note that annotating a bounding box in each slice is expensive and

thus not applicable in real-world clinical applications. This experiment is aimed at

exploring the upper-bound of our segmentation networks under perfect localization.

With oracle information provided, our best model reports 86.37%, which is consid-

erably higher than the number (84.50%) without using oracle information. If we do

not fine-tune the networks using coarse-scaled segmentation (see Table 3-II), the above

numbers are 86.26% and 83.68%, respectively. This is to say, fine-tuning prevents

our model from relying on the ground-truth mask. It not only improves the average

accuracy, but also alleviates over-fitting (the disadvantage of our model against that
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Organ Stepwise-C Stepwise-F End2end-C End2end-F
adrenal g. 57.38 61.65 60.70 63.76
duodenum 67.42 69.39 71.40 73.42
gallbladder 82.57 ♯82.12 87.08 87.10
inferior v.c. 71.77 ♯71.15 79.12 79.69
kidney l. 92.56 92.78 96.08 96.21
kidney r. 94.98 95.39 95.80 95.97
pancreas 83.68 85.79 86.09 87.60

Table 3-IV. Comparison of coarse-scaled (C) and fine-scaled (F) segmentation by our
step-wise approach and end-to-end approach on our JHMI multi-organ dataset. A fine-
scaled accuracy is indicated by ♯ if it is lower than the coarse-scaled one. The pancreas
segmentation accuracies are higher than those in Table 3-III, due to the increased number
of training samples and the higher resolution in CT scans.

with oracle information is decreased by 0.67%).

3.5 JHMI Multi-Organ Segmentation Experiments

To verify that our approach can be applied to other organs, the radiologists in our

team collect a large dataset which contains 200 CT scans, 11 abdominal organs and 5

blood vessels. This corpus took 4 full-time radiologists around 3 months to annotate.

To the best of our knowledge, this dataset is larger and contains more organs than any

public datasets. We choose 5 most challenging targets including the pancreas and a

blood vessel, as well as two kidneys which are relatively easier. Other easy organs such

as the liver are not included. To the best of our knowledge, some of these organs were

never investigated before, but they are important in diagnosing pancreatic diseases

and detecting the pancreatic cancer at an early stage. We randomly partition the

dataset into 4 folds for cross validation. Each organ is trained and tested individually.

When a pixel is predicted as more than one organ, we choose the one with the largest

confidence score.

Results of our two approaches are summarized in Table 3-IV. Our end-to-end

approach performs generally better than the step-wise approach. It reports a 4.29%
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Input Image Segmentation by [46]

adrenal gland gallbladder
pancreas
kidneys (left/right)

duodenum inferior vena cava

Segmentation by RSTN

Figure 3-8. Multi-organ segmentation in the axial view (best viewed in color). Organs
are marked in different colors (input image is shown with the ground-truth annotation).

average improvement over 5 challenging organs (the kidneys excluded). An example is

displayed in Figure 3-8.

3.6 Summary

This work is motivated by the difficulty of small target segmentation, which is required

to focus on a local input region. Two coarse-to-fine approaches are proposed, namely,

step-wise coarse-to-fine and end-to-end coarse-to-fine. The step-wise algorithm is

formulated as a fixed-point model taking the segmentation mask as both the input and

the output, whereas the end-to-end algorithm jointly optimizes over the two stages,

and generally achieves better results compared with the step-wise one.

Our approaches are applied to different datasets for pancreas segmentation and

multi-organ segmentation, and outperforms the baseline approach as well as previous

state-of-the-arts significantly. Confirmed by the radiologists in our team, these

segmentation results are helpful to computer-assisted clinical diagnoses.
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Chapter 4

Deep Supervision for Pancreatic
Cyst Segmentation

The automatic segmentation of an organ and its cystic region is a prerequisite of

computer-aided diagnosis. In this chapter, we focus on pancreatic cyst segmentation in

an abdominal CT scan. This task is important and very useful in clinical practice yet

challenging due to the low contrast in boundary, the variability in location, shape and

the different stages of pancreatic cancer. Inspired by the high relevance between the

location of a pancreas and its cystic region, we introduce extra deep supervision into

the segmentation network, so that cyst segmentation can be improved with the help of

relatively easier pancreas segmentation. Under a reasonable transformation function,

our approach can be factorized into two stages, and each stage can be efficiently

optimized via gradient back-propagation throughout the deep networks. We collect

a new dataset with 131 pathological samples, which, to the best of our knowledge,

is the largest set for pancreatic cyst segmentation. Without human assistance, our

approach consistently outperforms results achieved without deep supervision.

4.1 Introduction

In 2012, pancreatic cancers of all types were the 7th most common cause of cancer

deaths, resulting in 330,000 deaths globally. By the time of diagnosis, pancreatic
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cancer has often spread to other parts of the body. Therefore, it is very important to

use medical imaging analysis to assist identifying malignant cysts in the early stages

of pancreatic cancer to increase the survival chance of a patient [133]. The emerge

of deep learning has largely advanced the field of computer-aided diagnosis (CAD).

With the help of the state-of-the-art deep convolutional neural networks [35, 36], such

as the fully-convolutional networks (FCN) [41] for semantic segmentation, researchers

have achieved accurate segmentation on many abdominal organs. There are often

different frameworks for segmenting different structures [7, 134]. Meanwhile, it is of

great interest to find the lesion area in a structure [23, 24, 51], which, frequently, is

even more challenging due to the high variability in the shape, texture, size, etc.

This chapter focuses on segmenting pancreatic cyst from abdominal CT images.

The pancreas is one of the abdominal organs that are very difficult to be segmented

even in the healthy cases [7, 8, 13], mainly due to the low contrast in the boundary and

the high variability in its geometric properties. In the pathological cases, the difference

in the pancreatic cancer stage also impacts both the morphology of the pancreas

and the cyst [135, 136]. Despite the importance of pancreatic cyst segmentation,

this topic is less studied: some of the existing methods are based on old-fashioned

models [137], and a state-of-the-art approach [133] requires a bounding box of the cyst

to be annotated beforehand, as well as a lot of interactive operations throughout the

segmentation process to annotate some voxels on or off the target. These requirements

are often unpractical when the user is not well knowledgeable in medicine. To the

best of our knowledge, our method is the first to produce reasonable pancreatic cyst

segmentation without human assistance on the testing stage.

Intuitively, the pancreatic cyst is often closely related to the pancreas, and thus

segmenting the pancreas (relatively easier) may assist the localization and segmentation

of the cyst. To this end, we introduce deep supervision [138] into the original

segmentation network, leading to a joint objective function taking both the pancreas
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and the cyst into consideration. Using a reasonable transformation function, the

optimization process can be factorized into two stages, in which we first find the

pancreas, and then localize and segment the cyst based on the predicted pancreas

mask. Our approach works efficiently based on the coarse-to-fine approaches [13,

14] introduced in Chapter 3 for pancreas segmentation. We perform experiments

on a newly collected dataset with 131 pathological samples from CT scan. Without

human assistance, our approach consistently outperforms results achieved without

deep supervision.

4.2 Approach

4.2.1 Formulation

Let the 3D CT-scanned volume X annotated with ground-truth pancreas segmentation

P⋆ and cyst segmentation C⋆, and both of them are of the same dimensionality as

X. P ⋆
i = 1 and C⋆

i = 1 indicate a foreground voxel of pancreas and cyst, respectively.

Denote a cyst segmentation model as M : C = f(X; Θ), where Θ denotes the

model parameters. The loss function can be written as L(C, C⋆). In a regular deep

neural network such as our baseline, the fully-convolutional network (FCN) [41], we

optimize L with respect to the network weights Θ via gradient back-propagation.

To deal with small targets, we also follow [78] to compute the DSC loss function:

L(C, C⋆) = 2×
∑︁

i
CiC

⋆
i∑︁

i
Ci+

∑︁
i
C⋆

i
. The gradient ∂L(C,C⋆)

∂C can be easily computed.

The pancreas is a small organ, and the pancreatic cyst is even smaller. In our

newly collected dataset, the fraction of the cyst, relative to the entire volume, is often

much smaller than 0.1%. In a very challenging case, the cyst only occupies 0.0015%

of the volume, or around 1.5% of the pancreas. This largely increases the difficulty of

segmentation or even localization. Figure 4-1 shows a representative example where

cyst segmentation fails completely when we take the entire 2D slice as the input.
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Input Image

Case #123

Global Segmentation

DSC = 0.00%

Local Segmentation

DSC = 85.21%

Figure 4-1. A relatively difficult case in pancreatic cyst segmentation and the results
produced by different input regions, namely using the entire image and the region around the
ground-truth pancreas mask (best viewed in color). The cystic, predicted and overlapping
regions are marked by red, green and yellow, respectively. For better visualization, the
right two figures are zoomed in w.r.t. the red frame.

To deal with this problem, we note that the location of the pancreatic cyst is highly

relevant to the pancreas. Denote the set of voxels of the pancreas as P⋆ = {i | P ⋆
i = 1},

and similarly, the set of cyst voxels as C⋆ = {i | C⋆
i = 1}. Frequently, a large fraction of

C⋆ falls within P⋆ (e.g., |P⋆ ∩ C⋆| / |C⋆| > 95% in 121 out of 131 cases in our dataset).

Starting from the pancreas mask increases the chance of accurately segmenting the

cyst. Figure 4-1 shows an example of using the ground-truth pancreas mask to recover

the failure case of cyst segmentation.

This inspires us to perform cyst segmentation based on the pancreas region, which

is relatively easy to detect. To this end, we introduce the pancreas mask P as an

explicit variable of our approach, and append another term to the loss function to

jointly optimize both pancreas and cyst segmentation networks. Mathematically, let

the pancreas segmentation model be MP : P = fP(X; ΘP), and the corresponding

loss term be LP(P, P⋆). Based on P, we create a smaller input region by applying

a transformation X′ = σ[X, P], and feed X′ to the next stage. Thus, the cyst

segmentation model can be written as MC : C = fC(X′; ΘC), and we have the

corresponding loss them LC(C, C⋆). To optimize both ΘP and ΘC, we consider the
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Figure 4-2. The framework of our approach (best viewed in color). Two deep segmentation
networks are stacked, and two loss functions are computed. The predicted pancreas mask
is used in transforming the input image for cyst segmentation.

following loss function:

L(P, P⋆, C, C⋆) = λLP(P, P⋆) + (1− λ)LC(C, C⋆), (4.1)

where λ is the balancing parameter defining the weight between either terms.

4.2.2 Optimization

We use gradient descent for optimization, which involves computing the gradients over

ΘP and ΘC. Among these, ∂L
∂ΘC

= ∂LC
∂ΘC

, and thus we can compute it via standard

back-propagation in a deep neural network. On the other hand, ΘP is involved in

both loss terms, and applying the chain rule yields:

∂L
∂ΘP

= ∂LP

∂ΘP
+ ∂LC

∂X′ ·
∂X′

∂P
· ∂P

∂ΘP
. (4.2)

The second term on the right-hand side depends on the definition of X′ = σ[X, P]. In

practice, we define a simple transformation to simplify the computation. The intensity

value (directly related to the Hounsfield units in CT scan) of each voxel is either

preserved or set as 0, and the criterion is whether there exists a nearby voxel which is

likely to fall within the pancreas region:

X ′
i = Xi × I{∃j | Pj > 0.5 ∧ |i− j| < t}, (4.3)
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where t is the threshold which is the farthest distance from a cyst voxel to the pancreas

volume. We set t = 15 in practice, and our approach is not sensitive to this parameter.

With this formulation, i.e., ∂X′
i

∂Pj
= 0 almost everywhere. Thus, we have ∂X′

∂P = 0 and
∂L

∂ΘP
= ∂LP

∂ΘP
. This allows us to factorize the optimization into two stages in both

training and testing. Since ∂L
∂ΘP

and ∂L
∂ΘC

are individually optimized, the balancing

parameter λ in Eqn. (4.1) can be ignored. The overall framework is illustrated in

Figure 4-2. In training, we directly set X′ = σ[X, P⋆], so that the cyst segmentation

model MC receives more reliable supervision. In testing, starting from X, we compute

P, X′ and C orderly. Dealing with two stages individually reduces the computational

overheads. It is also possible to formulate the second stage as multi-label segmentation.

4.3 Experiments

4.3.1 Dataset and Evaluation

We evaluate our approach on a cyst dataset collected by the radiologists in our team.

This dataset contains 131 contrast-enhanced abdominal CT volumes, and each of them

is manually labeled with both pancreas and pancreatic cyst masks. The resolution of

each CT scan is 512× 512×L, where L ∈ [358, 1121] is the number of sampling slices

along the long axis of the body. The slice thickness varies from 0.5mm–1.0mm. We

split the dataset into 4 fixed folds, and each of them contains approximately the same

number of samples. We apply cross validation, i.e., training our approach on 3 out

of 4 folds and testing it on the remaining one. The same as before, we measure the

segmentation accuracy by computing the Dice-Sørensen Coefficient (DSC) for each

3D volume. We report the average DSC score together with other statistics over all

131 testing cases from 4 testing folds.
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4.3.2 Implementation Details

We follow Section 4.2 to use a multi-stage approach, which first finds the regular

organ (pancreas), and then locates the neoplasm (cyst) by referring to that organ.

Based on the coarse-to-fine approaches [13, 14] introduced in Chapter 3 for pancreas

segmentation, we hereby introduce the following two different implementations for

pancreatic cyst segmentation. First, based on the step-wise coarse-to-fine framework,

we adopt a four-stage strategy, i.e., coarse-scaled and fine-scaled pancreas segmentation,

as well as coarse-scaled and fine-scaled cyst segmentation are performed sequentially

in a step-wise manner. Second, this can be also implemented by two RSTN (i.e., end-

to-end coarse-to-fine) modules, where the first RSTN segments the pancreas given the

CT images while the second segments the pancreatic cyst given the pancreas-cropped

region as the input.

4.3.3 Results and Discussion

We report both pancreas and cyst segmentation results in Table 4-I, where we sum-

marize the results of pancreas segmentation, pancreatic cyst segmentation without

pancreas supervision (i.e., two-stage coarse-to-fine approach, w/o deep supervision),

and pancreatic cyst segmentation with pancreas supervision (i.e., four-stage strategy,

w/ deep supervision). It is interesting to see that without deep supervision, our

two approaches perform comparably with each other, but with deep supervision, the

end-to-end approach works better than the step-wise one. This is because a much

better pancreas segmentation result (i.e., 83.81% compared with 79.32%) provides

more accurate contextual information for cyst segmentation. In addition, our ap-

proaches yield even better results by adopting a stronger backbone, e.g., under the

setting of Step-Wise, w/ Deep Supervision, when we employ DeepLab [42] as the

backbone network in the coarse-stage for pancreas segmentation, we can even achieve

69.38± 27.60% in DSC for cyst segmentation.
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Three representative cases are shown in Figure 4-3. In the first case, both the

pancreas and the cyst can be segmented accurately from the original CT scan. In the

second case, however, the cyst is small in volume and less discriminative in contrast,

and thus an accurate segmentation is only possible when we roughly localize the

pancreas and shrink the input image size accordingly. The accuracy gain of our

approach mainly owes to the accuracy gain of this type of cases. The third case shows

a failure example of our approach, in which an inaccurate pancreas segmentation leads

to a complete missing in cyst detection. Note that the baseline approach reports a

59.93% DSC in this case, and, if the oracle pancreas bounding box is provided, we can

still achieve a DSC of 77.56%. This inspires us that cyst segmentation can sometimes

help pancreas segmentation, and this topic is left for future research.

To the best of our knowledge, pancreatic cyst segmentation has been little studied

previously. A competitor is [33] published in 2016, which combines random walk

and region growth for segmentation. However, it requires the user to annotate the

region-of-interest (ROI) beforehand, and provide interactive annotations on fore-

ground/background voxels throughout the segmentation process. In comparison, our

approaches can be widely applied to automatic diagnosis, especially for the common

users without professional knowledge in medicine. Our studies on the pancreas and

pancreatic cyst segmentation are summarized in [15].

4.4 Summary

This chapter presents the first system for pancreatic cyst segmentation which can

work without human assistance on the testing stage. Motivated by the high relevance

of a cystic pancreas and a pancreatic cyst, we formulate pancreas segmentation

as an explicit variable in the formulation, and introduce deep supervision to assist

the network training process. The joint optimization can be factorized into two

stages, making our approach very easy to implement. We collect a dataset with 131
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DSC = 68.21%
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Case #123 DSC = 73.59% DSC = 0.00%DSC = 84.70%

Fine-scaled Input

Case #130 DSC = 34.65% DSC = 59.93%DSC = 0.00%

This slice
is ignored 
in testing

Figure 4-3. Sample pancreas and pancreatic cyst segmentation results (best viewed in
color). From left to right: input image (in which pancreas and cyst are marked in red and
green, respectively), pancreas segmentation result, and cyst segmentation results when we
apply deep supervision (denoted by +) or not (-). The figures in the right three columns
are zoomed in w.r.t. the red frames. In the last example, pancreas segmentation fails in
this slice, resulting in a complete failure in cyst segmentation.

Target Method Average Max Min
pancreas step-wise 79.23± 9.72 93.82 69.54
pancreas end-to-end 83.81± 10.51 94.34 20.77
cyst step-wise, w/o Deep Supervision 60.46± 31.37 95.67 0.00
cyst end-to-end, w/o Deep supervision 60.73± 32.46 96.50 0.00
cyst step-wise, w/ Deep Supervision 63.44± 27.71 95.55 0.00
cyst end-to-end, w/ Deep Supervision 67.19± 27.91 96.05 0.00

Table 4-I. Accuracy (DSC, %) comparison on different targets (pancreas or cyst) and
different approaches. For cyst segmentation, w/o Deep Supervision means directly apply
our coarse-to-fine approaches on cyst segmentation, given the whole CT image, while w/
Deep Supervision means segmenting the pancreas first, and then segmenting the cyst in
the input image cropped by the pancreas region.

pathological cases. Based on the coarse-to-fine segmentation algorithms, our approach

produces reasonable cyst segmentation results. It is worth emphasizing that our
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approach does not require any extra human annotations on the testing stage, which

is especially practical in assisting common patients in cheap and periodic clinical

applications.

This work teaches us that a lesion can be detected more effectively by considering

its highly related organ(s). This knowledge, being simple and straightforward, is useful

in future work, especially for the pathological organ or lesion segmentation.
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Chapter 5

Abdominal Multi-Organ
Segmentation with
Organ-Attention Networks and
Statistical Fusion

Accurate and robust segmentation of abdominal organs on CT is essential for many

clinical applications such as computer-aided diagnosis and computer-aided surgery.

But this task is challenging due to the weak boundaries of organs, the complexity of

the background, and the variable sizes of different organs. To address these challenges,

we introduce a novel framework for multi-organ segmentation of abdominal regions by

using organ-attention networks with reverse connections (OAN-RCs) which are applied

to 2D views, of the 3D CT volume, and output estimates which are combined by

statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage

deep convolutional network, where deep network features from the first stage are

combined with the original image, in a second stage, to reduce the complex background

and enhance the discriminative information for the target organs. Intuitively, OAN

reduces the effect of the complex background by focusing attention so that each organ

only needs to be discriminated from its local background. RCs are added to the first

stage to give the lower layers more semantic information thereby enabling them to

adapt to the sizes of different organs. Our networks are trained on 2D views (slices)
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enabling us to use holistic information and allowing efficient computation (compared

to using 3D patches). To compensate for the limited cross-sectional information of

the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-

sectional images are reconstructed from the three different 2D view directions. Then

we combine the segmentation results from the different views using statistical fusion,

with a novel term relating the structural similarity of the 2D views to the original

3D structure. To train the network and evaluate results, 13 structures were manually

annotated by four human raters and confirmed by a senior expert on 236 normal

cases. We tested our algorithm by 4-fold cross-validation and computed Dice-Sørensen

similarity coefficients (DSC) and surface distances for evaluating our estimates of the

13 structures. Our experiments show that the proposed approach gives strong results

and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC

and mean surface distances.

5.1 Introduction

Segmentation of the internal structures, like body organs, in medical images is an

essential task for many clinical applications such as computer-aided diagnosis (CAD),

computer-aided surgery (CAS) and radiation therapy (RT). However, despite intensive

studies of automatic or semi-automatic segmentation methods, there remain challenges

which need to be overcome before these methods can be applied to clinical environments.

In particular, detailed abdominal organ segmentation on CT is a challenging task

both for manual human annotation and for automatic segmentation algorithms for

various reasons including the morphological complexity of the structures, the large

variations between inter- and intra-subjects, and image characteristics such as low

contrast of soft tissues.

Early studies of abdominal organ segmentation focused on specific single organs,

for example relatively large isolated structures such as the liver [26, 139, 140] or critical
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structures such as blood vessels [141, 142]. However, most of the algorithms were

based on specific features of the target organ, and so extensibility to the simultaneous

segmentation of multiple organs was limited. For multi-organ segmentation, atlas-

based approaches were adopted for many applications [58–64]. The general framework

of atlas-based segmentation is to deformably register selected atlas images with

segmented structures to the target image. Critical issues for this approach, which

affect performance accuracy, include proper atlas selection, accurate deformable image

registration, and label fusion. In particular, for the abdominal region, inter-subject

variations are relatively large compared with other parts of the body (e.g., the brain)

so the segmentation results are dependent on deformable registration between inter-

subjects from the limited set of atlases, which is a challenging problem that critically

affects the final accuracies. In addition, the computational time is strongly dependent

on the number of atlases. Therefore, the selection of the proper number and types of

atlases is a critical factor for both accuracy and efficiency.

Recently, learning-based approaches exploiting large datasets have been applied to

the segmentation of medical images [6, 24, 48, 78, 102, 120, 143–146]. In particular,

deep convolutional neural networks (CNN) have been very successful [6, 8, 24, 48,

78, 102, 120, 143, 145]. Targets include regions in the brain [6, 24, 102], chest [145],

and abdomen [7, 8, 48]. The performance results of CNNs for organs (and even

tumors) reach, or outperform, alternative state-of-the-art methods. Unlike multi-atlas-

based approaches, deep networks do not require selecting a specific atlas or require

deformable registration from training sets to a target image. In this study, we apply

deep network approaches to abdominal organ segmentation.

Most studies based on deep networks, however, focused on a single structure

segmentation, particularly for abdominal regions, and there are few studies of multi-

organ segmentation partly due to technical challenges discussed later. We note that

fully convolutional networks (FCNs) [41] have been generally accepted for organ
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segmentation on CT scans [8, 13, 143] partly because they give state-of-the-art

performance for semantic segmentation of natural images [41, 102]. But there are

three major characteristics of abdominal CT which we must address in order to obtain

strong performance on multi-organ segmentation.

Firstly, many abdominal organs have weak boundaries between spatially adjacent

structures on CT, e.g., between the head of the pancreas and the duodenum. In

addition, the entire CT volume includes a large variety of different complex structures.

Morphological and topological complexity includes anatomically connected structures

such as the gastrointestinal (GI) track (stomach, duodenum, small bowel and colon)

and vascular structures. The correct anatomical borders between connected structures

may not be always visible in CT, especially in sectional images (i.e., 2D slices), and

may be indicated only by subtle texture and shape change, which causes uncertainty

even for human experts. This makes it hard for deep networks to distinguish the

target organs from the complex background.

Secondly, there are large variations in the relative sizes of different target organs,

e.g., the liver compared to the gallbladder. This causes problems when applying deep

networks to multi-organ segmentation because lower layers typically lack semantic

information when segmenting small structures. The same problem has been observed

in semantic segmentation of natural images where the segmentation performance on

small regions is typically much worse than on large regions, motivating the need to

introduce mechanisms which attend to the scale [147].

Thirdly, although CT scans are high-resolution three-dimensional volumes, most

current deep network methods were designed for 2D images. To overcome the limita-

tions of using 2D CNNs for 3D images, [145] used multiple 2D patches reconstructed

from 9 different directions around the target region for the task of pulmonary nodule

detection. [63] used 2D axial, coronal, and sagittal slices for pancreas detection at

the coarse level and also for segmentation at the finer level. More recently, there are
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studies which use 3D deep networks [6, 66, 78, 143]. These, however, are not networks

that act on the entire 3D CT volume but instead are local patch-based approaches

(due to complex challenges of 3D deep networks discussed later in this paragraph).

To address the problems caused by restricting to image patches, [75] and [6] used a

hierarchical approach with multi-resolutions, which reduces the dimension of the whole

volume for initial detection and focuses on smaller regions at the finer resolution. But

this strategy is best suited to a single target structure. [66] applied a bigger patch size

to deal with the whole dense pancreatic volume, but this was also for single pancreas

segmentation and hard to extend to the whole abdominal region. In general, 3D deep

networks face far greater complex challenges than 2D deep networks. Both approaches

rely heavily on graphics processing units (GPUs) but these GPUs have limited memory

size which makes it difficult when dealing with full 3D CT volumes compared to 2D

CT slices (which require much less memory). In addition, 3D deep networks typically

require many more parameters than 2D deep networks and hence require much more

training data, unless they are restricted to patches. But there is limited training data

for abdominal CT images, because annotating them is challenging and requires expert

human radiologists, which makes it particularly difficult to apply 3D deep networks

to abdominal multi-organ segmentation. We have, however, implemented a 3D patch

based approach for comparison.

To deal with the technical difficulties for abdominal multi-organ segmentation on

CT, we introduce a novel framework of an organ-attention 2D deep networks with

reverse connections (OAN-RC) followed by statistical fusion to combine the information

from the three different views exploiting structural similarity using local isotropic

3D patches. OAN is a two-stage deep network, which computes an organ-attention

map (OAM) from typical probability map of labels for input images in the first stage

and combines OAM to the original input image for the second stage. This two-stage

strategy effectively reduces the complexity of the background while enhancing the
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discriminative information of target structures (by concentrating attention close to

the target structures). By training OAM with additional deep network, uncertainties

and errors from the first stage are adjusted and the fidelity of the final probability

map is improved. In this procedure, we apply reverse connections [148] to the first

stage so that we can localize organ information at different scales by assisting the

lower layers with semantic information.

More specifically, we apply OAN-RC to each sectional slice, which is an extreme

form of anisotropic local patches but include the whole semantic (i.e., volume) in-

formation from one viewing direction. This yields segmentation information from

separate sets of multi-sectional images (axial, coronal, and sagittal planes in this

study similarly to most of medical image platforms for 2D visualization). We statis-

tically fuse the three sources of information using local isotropic 3D patches based

on direction-dependent local structural similarity. The basic fusion framework uses

expectation-maximization (EM) similar to [59, 149]. But, unlike typical statistical

fusion methods used for atlas-based segmentation, the input volumes and the target

volumes for segmentation in our problem are the same. But different structures and

texture patterns, from different viewing directions, will often generate nonidentical

segmentations in 3D. Our strategy is to exploit structural similarity by computing a

direction-dependent local property at each voxel. This models the structural similarity

from the 2D images to the original 3D structure (in the 3D volume) by local weights.

This structural statistical fusion improves our overall performance by combining the

information from the three different views in a principled manner and also imposing

local structure.

Figure 5-1 describes the graphical concept of our framework. Our proposed

algorithm was tested on 236 abdominal CT scans of normal cases collected as a part

of FELIX project for pancreatic cancer research [150]. By experiments, our method

showed robust and high fidelities to the ground-truth for all target structures with
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Figure 5-1. The overall framework for multi-organ segmentation.

smooth boundaries. It outperformed 3D patch-based algorithms as well as 2D-based

in terms of DICE-similarity coefficient and average surface distance with memory and

computational efficiency.

5.2 Organ-Attention Networks with Reverse Con-
nections

Given a 3D volume of interest (VOI) of a scanned CT image V ⊂ R3, our goal is to find

the label of each voxel v ∈ V . The target structures (i.e., the labeled structures) are

restricted to be organs which do not overlap with each other, so every voxel v should

be assigned to a label in a finite set L. In this section we introduce our proposed

organ-attention networks with Reverse connections (annotated as OAN-RC) which is

run separately on three different views, and then in the next section we describe our

novel structural similarity statistical fusion method which combines the segmentation

results obtained from the OAN-RCs on the three different views.
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5.2.1 Two-stage Organ Attention Network

We first introduce the OAN, which is composed of two jointly optimized stages. The

first stage (stage-I) transforms the organ segmentation probability map to provide

spatial attention to the second stage (stage-II), so that the segmentation network

trained in stage-II is more discriminative for segmenting organs (because it only has

to deal with local context). To assist the lower layers in stage-I with more semantic

information, we employ reverse connections (Section 5.2.2), which pass semantic

information down from high layers to low layers. The OAN is trained in an end-to-end

fashion to enhance the learning ability of all stages.

The input images to our OAN are reconstructed 2D slices from axial, sagittal and

coronal directions. Based on the normal vector directions of the sagittal (X), coronal

(Y ) and axial (Z) planes, we denote the 2D images by IX
i , IY

j and IZ
k respectively,

where i = 1, . . . , nx, j = 1, . . . , ny, k = 1, . . . , nz and nx, ny, nz are the numbers of

slices for the three directions, respectively, and ⋃︁
i IX

i = ⋃︁
j IY

j = ⋃︁
k IZ

k = V . Following

the work of [13], we train an individual OAN for each direction.

…

Stage-I

…

Stage-II

Output of convolutional layer

Probability map
Ground truthInput image

Organ-attention map

𝐈𝐈

𝐓𝐓 𝐓𝐓

𝐏𝐏(1) 𝐐𝐐 𝐈𝐈(2) 𝐏𝐏(2)

Organ-attention module

Reverse connection

Figure 5-2. The architecture of our two-stage organ-attention network with reverse
connections. The organ-attention network (OAN) is composed of two jointly optimized
stages, where the first stage (stage-I) transforms the organ segmentation probability map
by spatial attention to the second stage (stage-II). Hence the organ segmentation map
generated in the organ-attention module guides the latter computation. The reverse
connections, described in Section 5.2.2, modify the first stage of OAN as shown by dashed
lines.
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Figure 5-2 illustrates our organ-attention-network architecture. The network

consists of two stages, where each stage is a segmentation network. For notational

simplicity, we denote an input 2D slice by I ⊂ RH×W and its corresponding label map by

T = {ti}i=1,...,H×W . Stage-I outputs a probability map P(1) = f(I; Θ(1)) ⊂ RH×W ×|L|

for each label at every pixel, where the probability density function f(·; Θ(1)) is

a segmentation network parameterized by Θ(1). We use FCN [41] with reverse

connections, which is explained in Section 5.2.2, as Θ(1). FCN is the backbone network

throughout the chapter. Each element p
(1)
i,l ∈ P(1) is the probability that the i-th pixel

in the input slice belongs to label l, where l = 0 is the background, and l = 1, ..., |L| are

target organs. We define p
(1)
i,l = σ(a(1)

i,l ) = exp(a(1)
i,l

)∑︁|L|
t=0 exp(a(1)

i,t )
, where a

(1)
i,l is the activation value

of the i-th pixel on the l-th channel dimension. Let A(1) = {a(1)
i,l }i=1,...,H×W,l=0,...,|L| be

the activation map. The objective function to minimize for Θ(1) is given by

J (1)(Θ(1)) = − 1
H ×W

⎡⎣H×W∑︂
i=1

|L|∑︂
j=0

1 (ti = l) log p
(1)
i,l

⎤⎦ , (5.1)

where 1(·) is an indicator function.

Using a preliminary organ segmentation map to guide the computation of a better

organ segmentation can be thought as employing an attentional mechanism. Towards

this end, we propose an organ-attention module by

Q = W ∗P(1) + b, (5.2)

where ∗ denotes the convolution operator, W indicates the convolutional filters, and

b is the bias. Eqn. (5.2) embeds cross-organ information into a single organ-attention

map, Q, which learns discriminative spatial attention for different organs automatically.

By combining Q with the original input I, we get an image which emphasizes each

organ by

I(2) = I ⋆ Q, (5.3)

where ⋆ is the element-wise product operator. We apply I(2) to the input of stage-II,

and the probability of stage-II then becomes P(2) = f(I(2); Θ(2)).
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In order to drive stage-II to focus on organ regions without needing to deal with

complicated non-local background, we define a selection function, 1(P(1)
0 ⩽ ρ) where

P(1)
0 = {p(1)

i,0 }i=1,...,H×W is the probability map provided by stage-I. In stage-II, we only

accept the region if p
(1)
i,0 > ρ and do not back-propagate it to stage-I. The loss function

for stage-II is formulated as

J (2)(Θ(2), W, b) = − 1
H ×W

⎡⎣H×W∑︂
i=1

|L|∑︂
j=0

1
(︂
p

(1)
i,0 ⩽ ρ

)︂
· 1 (ti = l) log p

(2)
i,l

⎤⎦ . (5.4)

To jointly optimize stage-I and stage-II, we define a loss function aiming at

estimating parameters Θ(1), Θ(2), W, and b by optimizing

J = h(1)J (1)(Θ(1)) + h(2)J (2)(Θ(2), W, b), (5.5)

where h(1) and h(2) are the fusion weights.

5.2.2 Reverse Connections

FCNs [41] have shown good segmentation results in recent studies, especially for single

organ segmentation. However, for multi-organ segmentation, lower layers typically

lack semantic information, which may lead to inaccurate segmentation particularly for

smaller structures. Therefore, we propose reverse connections which feed coarse-scale

(high) layer information backward to fine-scale (low) layer for semantic segmentation of

multi-scale structures, inspired by [148]. This enables us to connect abstract high-level

semantic information to the more detailed lower layers so that all the target organs

have similar levels of details and abstract information at the same layer. The reverse

connections framework for stage-I is shown in Figure 5-3. Figure 5-4 illustrates a

reverse connection block. Let Rn denote the reverse connection map of the n-th

convolutional layer in the backbone network, i.e., FCN in this study, where Cn is

the output of the n-th convolutional layer. A convolutional layer (with 512 channels

by 3× 3 kernels) is added after Cn, and a deconvolutional layer (with 512 channels

by 4 × 4 kernels) is applied after Rn+1. Rn is then obtained via an element-wise
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Figure 5-3. The reverse connections architecture of OAN stage-I. The network has reverse
connections to the output of convolutional layers. In the training step, both backbone
network and reverse connection side-outputs are supervised by the ground-truth. Finally,
all reverse connection side-outputs and the output of backbone network are fused and
made to approach ground-truth.

summation of these two maps. R7 is the output of a convolutional layer (with 512

channels by 2× 2 kernels) grafted onto C7. Let wn denote the corresponding weights

for obtaining Rn. Following [148], we add reverse connections from C4 to C7.

With these learnable reverse connections, the semantic information of the lower

layers can be enriched. In order to drive learned reverse connection maps to produce

segmentation results approaching the ground-truth, we make each reverse connection

map associate with a classifier. As the side-output layers proposed in [148] are designed

for detection purposes, they are not suitable for our task. Instead we follow the side-

outputs used in [151]. More specifically, a convolutional layer (with |L| channels by

1× 1 kernels) is added on top of Rn, whose output is denoted as Vn, and followed
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Figure 5-4. A reverse connection block.

by a deconvolutional layer (with |L| channels). We denote the weights of the n-th

side-output layer by θn. The loss function for side-output layers J (s,1) is defined as

J (s,1)(Θ(1), w, θ) =
7∑︂

n=4
h(s,1)

n ℓ(s,1)
n

(︂
Θ(1), wn, θn

)︂
, (5.6)

where ℓ(s,1)
n = − 1

H×W

[︂∑︁H×W
i=1

∑︁|L|
j=0 1 (ti = l) log p

(s,1)
i,l

]︂
and p

(s,1)
i,l is the probability

output of the n-th side-output layer.

In order to combine the learned reverse connection maps of fine layers and coarse

layers, we add up the predictions (i.e., Vn) of the reverse connection maps from

high layer to low layer gradually. First, V6 is fused with a 2× upsampling of V7

by an element-wisely addition. Then we follow the same strategy and gradually

merge V5 and V4, as shown in Figure 5-5. To obtain a fused activation map A(f,1) =

{a(f,1)
i,l }i=1,...,H×W,l=0,...,|L| from the activation map of both side-outputs (i.e., A(r,1))

and convolutional layers in the backbone network (i.e., A(b,1)), a scale function is

adopted followed by an element-wise addition by

A(f,1)
l = h

(r,1)
l A(r,1)

l + h
(b,1)
l A(b,1)

l , l = 0, ..., |L| (5.7)

where Al indicates the l-th channel of the activation map. h
(r,1)
l and h

(b,1)
l are fusion

weights. Then the fused probability map, P(f,1) = {p(f,1)
i,l }i=1,...,H×W,l=0,...,|L|, can be
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Figure 5-5. Feature fusion strategy. A deep-to-shallow refinement is adopted for multi-
scale side-output features. The final activation map (A(f,1)) for stage-I is an element-wise
addition of the side-output activation map (A(r,1)) and the backbone network activation
map (A(b,1)).

obtained by p
(f,1)
i,l = σ(a(f,1)

i,l ). The final objective function for stage-I is defined by

J (1)(Θ(1), w, θ) = h(b,1)J (b,1)(Θ(1))

+ h(s,1)J (s,1)(Θ(1), w, θ) + h(f,1)J (f,1)(Θ(1), w, θ),
(5.8)

where h(b,1), h(s,1) and h(f,1) are fusion weights, and

J (f,1)(Θ(1), w, θ) = − 1
H ×W

⎡⎣H×W∑︂
i=1

|L|∑︂
j=0

1 (ti = l) log p
(f,1)
i,l

⎤⎦ . (5.9)

Note that in our full system with the two-stage organ-attention network and

reverse connections, all the parameters are optimized simultaneously by standard

back-propagation

(Θ̂(1)
, ŵ, θ̂, Θ̂

(2)
, Ŵ, b̂)

= arg min{J (1)(Θ(1), w, θ) + h(2)J (2)(Θ(2), W, b)}.
(5.10)
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5.2.3 Testing Phase

In the testing stage, given a slice I, we obtain the stage-I and stage-II probability map

by

P(1) = f(I; Θ̂
(1)

, ŵ, θ̂)

P(2) = f(I; Θ̂
(2)

, Ŵ, b̂),
(5.11)

where f(·, ·) is the network functions defined in Section 5.2.1. A fused probability

map of P(1) and P(2) is then given by

P = P(1) ◦ 1(P(1)
0 > ρ) + P(2) ◦ 1(P(1)

0 ⩽ ρ). (5.12)

The final label map S = {si}i=1,...,H×W is determined by si = arg minl∈L pi,l.

5.3 Statistical Label Fusion Based on Local Struc-
tural Similarity

As described in Section 5.1, our OAN-RC is based on 2D images which is an extreme

case of 3D anisotropic patches. In this section, we propose to fuse anisotropic

information obtained from different viewing directions using isotropic 3D local patches

to estimate the final segmentation. Let us denote the segmentation results by Sj, (j =

1, . . . , M = 3), which are obtained as described in Section 5.2.3 from the axial (Z),

sagittal (X), and coronal (Y) OAN-RCs. Depending on the viewing directions, sectional

images contain different structures and may have different texture patterns in the same

organs. These differences can cause nonidentical segmentations by the deep network as

shown in Figure 5-6 in 3D. In addition, there is no guarantee of connectivity between

neighbor slices by independent use of slices for training and testing. Possible naïve

approaches for determining the final segmentation in 3D from the OAN-RC results

can be boolean operations such as union or intersection. Majority voting (MV) is

another candidate for efficient fusion, however, theses approaches assume the same
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Figure 5-6. An example of multi-planar reconstruction view of OAN-RC estimations

global weights of OAN-RC results. From the observations that the performance level

of segmentation, e.g., sensitivity, can be different from viewing directions for each

organ, we set the performance level to be an unknown variable when computing the

probability of labeling. This concept is similar to the label fusion algorithms using

expectation-maximization (EM) framework such as STAPLE (simultaneous truth and

performance level estimation) and its extensions [59, 149, 152].

Let us denote the true label of the V by T, which is unknown, and the unknown

performance level parameter of segmentation by θ. The segmentations from the deep

networks S = {Sj|j = 1, ..., M} are observed values. Under this condition, the basic

EM framework is performed by following two steps in an iterative manner: 1) to

compute Q0(θ|θ(k)) = ET
[︂
ln L(θ|S, T)|S, θ(k)

]︂
which is the expected value of the log

likelihood, ln L(θ|S, T) = ln P (S, T|θ), under the current estimate of the parameters

θ(k) at kth iteration, and 2) to find the parameter θ(k+1) which maximizes Q0(θ|θ(k)).
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The maximization step can be written as

θ(k+1) = arg max
θ

ET
[︂
ln P (S, T|θ)|S, θ(k)

]︂
= arg max

θ
ET

[︂
ln P (S|T, θ)P (T)|S, θ(k)

]︂
= arg max

θ

∑︂
T

ln {P (S|T, θ)P (T)}P (T|S, θ(k))

= arg max
θ

∑︂
T
{ln P (S|T, θ) + ln P (T)}P (T|S, θ(k)).

(5.13)

By assuming independence between T and θ in our problem, the second term∑︁
T ln P (T)P (T|S, θ(k)) in Eqn. (5.13) becomes free of θ and the maximization

step can be written as

θ(k+1) = arg max
θ

∑︂
T

ln P (S|T, θ)P (T|S, θ(k))

= arg max
θ

ET
[︂
ln P (S|T, θ)|S, θ(k)

]︂
.

(5.14)

Therefore, we redefine Q0(θ|θ(k)) as Q(θ|θ(k)) = ET
[︂
ln P (S|T, θ)|S, θ(k)

]︂
.

The performance level parameter in this framework is a global property representing

the overall confidence of deep network segmentation for the whole volume. However,

it can also vary according to the voxel spatial locations via the local and neighbor

structures as we use 2D slices for the initial segmentation. Therefore, we propose

to combine local structural similarity shown from a specific viewing direction to the

original 3D volume and the global performance level, conceptually similar to local

weighted voting [153]. We compute the probability of correspondence between 2D

images and the 3D volume by structural similarity (SSIM) [154] by

αj
i = P

(︂
ℓ2(Ij

i )|ℓ3(Vi)
)︂
≡ SSIM

(︂
ℓ2(Ij

i ), ℓ3(Vi)
)︂

=

(︂
2µℓ2(Ij

i )µℓ3(Vi) + c1
)︂ (︂

2σℓ2(Ij
i )ℓ3(Vi) + c2

)︂
(︃

µ2
ℓ2(Ij

i ) + µ2
ℓ3(Vi) + c1

)︃ (︃
σ2

ℓ2(Ij
i ) + σ2

ℓ3(Vi) + c2

)︃ ,
(5.15)

where αj
i is the SSIM from the jth viewing direction at the ith voxel. c1 and c2 are user-

defined constants, and ℓ2(Ii) and ℓ3(Vi) represent local 2D and 3D patches centered at

the ith voxel, respectively. µℓ and σℓ are the average and standard deviation of the

patch ℓ, respectively, and σℓ2(Ii)ℓ3(Vi) is the covariance of ℓ2(Ii) and ℓ3(Vi). Figure 5-7
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shows an example of the structural similarity computed on different viewing directions

as a color map.

Considering the local image properties, the expectation of log likelihood function

in our problem becomes

Q
(︂
θ|θ(k)

)︂
= E

[︂
ln P (S, I|T, V, θ) |S, I, V, θ(k)

]︂
=

∑︂
T

ln P (S, I|T, V, θ) P
(︂
T|S, I, V, θ(k)

)︂
.

(5.16)

The global underlying performance level parameters of the deep network segmentations

is defined as

θjs′s ≡ P
(︂
Sj

i = s′|Ti = s, θ
(k)
js′s

)︂
, (5.17)

where θjs′s is the probability of the voxel labeled as s′ from the jth deep network with

the current estimated performance value θ
(k)
js′s, when the true label is s.

To make the problem simple, we assume conditional independence between labeling

and the original volume intensities. The labeling probability with the target image

intensity then becomes

P
(︂
Sj

i = s′, ℓ2(Ij
i )|Ti = s, ℓ3(Vi), θ

(k)
js′s

)︂
= P

(︂
Sj

i = s′|Ti = s, θ
(k)
js′s

)︂
P

(︂
ℓ2(Ij

i )|ℓ3(Vi)
)︂

= θjs′sα
j
i .

(5.18)

5.3.1 E-step

In the expectation step (E-step), we estimate the probability of voxelwise labels. Let

us denote the probability that the true label of ith voxel is s ∈ L at the kth iteration

by ω
(k)
si . When the deep network segmentations S and performance level parameters

at the kth iteration θ(k) are given, ω
(k)
si can be then described as

P
(︂
Ti = s|S, I, V, θ(k)

)︂
≡ ω

(k)
si , (5.19)
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where θ ∈ RN×|L|×|L| is the vector of all (θjs′s)T . From the independence between

SX , SY , and SZ , we apply Bayesian theorem to Eqn. (5.19).

ω
(k)
si =

P (Ti = s) ∏︁
j P

(︂
Sj

i = s′, ℓ2(Ij
i )|Ti = s, ℓ3(Vi), θ

(k)
j

)︂
∑︁

n P (Ti = n) ∏︁
j P

(︂
Sj

i = s′, ℓ2(Ij
i )|Ti = n, ℓ3(Vi), θ

(k)
j

)︂ , (5.20)

where P (Ti = s) is a priori of the ith voxel. By applying Eqn. (5.18) to Eqn. (5.20),

we then obtain the probability of voxelwise labeling as

ω
(k)
si =

P (Ti = s) ∏︁
j θ

(k)
js′sα

j
i∑︁

n P (Ti = n) ∏︁
j θ

(k)
js′nαj

i

. (5.21)

5.3.2 M-step

In the maximization step (M-step), the goal is to find the performance parameters, θ,

which maximize Eqn. (5.16) with the current given parameters. Considering each Sj

and θj independently, the expectation of log likelihood function in Eqn. (5.16) can be

expressed with the estimated voxelwise probability in E-step. Then the performance

parameter of each segmentation can be formulated to find the solution which maximizes

the summation of voxelwise probability as

θ
(k+1)
j = arg max

θj

Q
(︂
θj|θ(k)

j

)︂
= arg max

θj

∑︂
i

Qi

(︂
θj|θ(k)

j

)︂
, (5.22)

where Qi = E[ln P (Si, ℓ2(Ii)|Ti, ℓ3(Vi), θ(k))|S, I, V, θ(k)] at ith voxel. By applying

Eqn. (5.19) and Eqn. (5.18), Eqn. (5.22) becomes

θ
(k+1)
j = arg max

θj

∑︂
i

∑︂
s

P (Ti = s|S, I, V, θ(k))× ln P
(︂
Sj

i , ℓ2(Ij
i )|Ti = s, ℓ3(Vi), θ

(k)
j

)︂
= arg max

θj

∑︂
i

∑︂
s

ω
(k)
si ln P

(︂
Sj

i , ℓ2(Ij
i )|Ti = s, ℓ3(Vi), θ

(k)
j

)︂
= arg max

θj

∑︂
s′

∑︂
i:Sj

i =s′

∑︂
s

ω
(k)
si × lnP

(︂
Sj

i = s′, ℓ2(Ij
i )|Ti = s, ℓ3(Vi), θ

(k)
j

)︂
= arg max

θj

∑︂
s′

∑︂
i:Sj

i =s′

∑︂
s

ω
(k)
si ln θjs′sα

j
i .

(5.23)

From the definition of θ in Eqn. (5.17), the summation of probability mass function,∑︁
s′ θ

(k)
js′s, must be 1, and Eqn. (5.22) becomes a constrained optimization problem
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which can be solved by introducing a Lagrange multiplier, λ. We then obtain the

optimal solution by making the first gradient zero as

0 = ∂

∂θjs′s

[︄
Q

(︂
θj|θ(k)

j

)︂
+ λ

∑︂
s′

θjs′s

]︄
. (5.24)

By applying the derivation of Q in Eqn. (5.16), Eqn. (5.22) and Eqn. (5.23), Eqn. (5.24)

becomes

0 =
∑︁

i:Sj
i =s′ ω

(k)
si αj

i

θjs′s
+ λ

θ
(k+1)
js′s =

∑︁
i:Sj

i =s′ ω
(k)
si αj

i

−λ
.

(5.25)

By substituting the constraint of ∑︁
s′ θ

(k)
js′s = 1, we can obtain the final optimal solution

as

θ
(k+1)
js′s =

∑︁
i:Sj

i =s′ αj
i ω

(k)
si∑︁

i ω
(k)
si

. (5.26)

The two steps, Eqn. (5.21) and Eqn. (5.26), are then computed alternatively in

the EM iterations until they converge. From the final values of Eqn. (5.21), the final

segmentation can be computed by graph-based approaches such as [155].

5.3.3 Parallel computing using GPUs

The fusion step can be efficiently computed in a parallel way on a GPU. The local

structural similarity αj
i of i-th voxel in jth deep network and priori P (Ti) can be

computed for each voxel and saved as a pre-processing step. In the EM iterations, as

shown in Eqn. (5.21), the probability can be computed and updated for each structure

at each voxel. In our implementation, a GPU thread is logically allocated for each

voxel. However, to reduce the used memory and computation cost, the target volume

of interest (VOI) for each structure s is computed in an extended region as δ = 4 voxels

for each direction from V (⋃︁
j Sj = s) in our implementation. For parallel computing,

one CPU thread is allocated to a structure and launches a kernel of one GPU to

compute EM iteration for each structure.
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Figure 5-7. The local structural similarity map between 2D slices and the 3D volume.
Each row is captured from the same similarity map computed on one viewing direction.
Each column shows the captures images at the same location computed from different
viewing directions.
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5.4 Experimental Results

We evaluated our methods on 236 abdominal CT images of normal cases under an IRB

(Institutional Review Board) approved protocol in Johns Hopkins Hospital as a part

of the FELIX project for pancreatic cancer research [150]. CT images were obtained

by Siemens Healthineers (Erlangen,Germany) SOMATOM Sensation and Definition

CT scanners. CT scans are composed of (319− 1051) slices of (512× 512) images, and

have voxel spatial resolution of ([0.523− 0.977]× [0.523− 0.977]× 0.5) mm3. All CT

scans are contrast enhanced images and obtained in the portal venous phase.

A total of 13 structures for each case were segmented by four human annota-

tors/raters, one case by one person, and confirmed by an independent senior expert.

The structures include the aorta, colon, duodenum, gallbladder, interior vena cava

(IVC), kidney (left, right), liver, pancreas, small bowel, spleen, stomach, and large

veins. Vascular structures were segmented only outside of the organs in order to make

the structures exclusive to each other (i.e., no overlaps).

As explained in Section 5.2, we used OAN-RCs for multi-organ segmentation

whose backbone FCNs had been pre-trained by PascalV OC dataset [131]. From

the possible variants of FCNs (e.g., FCN-32s, FCN-16s, and FCN-8s), which depend

on how they combine the fine detailed predictions [156], we selected FCN-8s in this

study because it captures very fine details in the 3rd and 4th pooling layer, and keeps

high-level semantic contextual information from the final layer. Our algorithm was

implemented and tested on a workstation with Intel i7-6850K CPU, NVidia TITAN

X (PASCAL) GPU. With 236 cases, the initial segmentations using OAN-RCs were

tested by four-fold cross-validation. All the input images of OAN-RCs are 1.5 times

enlarged by upsampling, which lead to improved performance in our experiments.

In the fusion step, the average probability of SX , SY , SZ are taken as a priors

in Eqn. (5.21) and the initial performance levels θ
(0)
js′s were computed by randomly
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selecting 5 cases and by comparing them to the ground-truth. To compute the local

patch-based structural similarity in Eqn. (5.15), patches of (4.5× 4.5× 4.5)mm3 size

cubes were used for 3D volume. Since CT voxels are not always isotropic and spatial

resolutions can be different between scan volumes, we re-sampled the 3D patch with

0.5mm length cubic voxels so that the same size of (9× 9× 9) 3D patches and (9× 9)

2D patches from all directions can be used for all cases in our experiments.

The final segmentation results using OAN-RC with local structural similarity-based

statistical fusion (LSSF) were compared with the 3D-patch based state-of-the-art

approaches, 3D Unet [143] and hierarchical 3D FCN (HFCN) [75] as well as 2D-based

FCN, OAN and OAN-RC with majority voting (MV). For a quantitative comparison,

we computed the well-known Dice-Sørensen similarity coefficient (DSC) and the

surface distances based on the manual annotations as ground-truth. For a structure s,

DSC is computed as 2V (S=s
⋂︁

T=s)
V (S=s)+V (T=s) where S is the estimated segmentation and T is

the ground-truth, i.e., manual annotations in this study. The surface distance was

computed from each vertex of the ground-truth and to the estimates of our algorithms.

Figure 5-8 shows comparison results by box plots, while Table 5-I and Table 5-II

represent the mean and standard deviations for all the 236 cases.

As shown in Figure 5-8, the basic OAN-RC outperforms other state-of-the-art

approaches and our local structural similarity-based fusion improves the results even

more. We note that although DSC shows the relative overall volume similarity, it

does not quantify the boundary smoothness or the boundary noise of the results. But

evaluating the surface distances, see below, shows that our method works effectively

for both the whole volumes and the boundaries of the organs.

Table 5-I and Table 5-II represent the mean and standard deviations of performance

measures for 13 critical organs. Similar to the box plots, they show that our OAN-

RCs with statistical fusion improves the overall mean performance and also reduces

the standard deviations significantly. Figure 5-9 shows an example generated by
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Figure 5-8. Box plots of the Dice-Sørensen similarity coefficients of 13 structures to
compare performance. As in typical box plots, the box represents the first quartile, median,
and the third quartile from the lower border, middle and the upper boarder, respectively,
and the lower and the upper whiskers show the minimum and the maximum values. (LSSF:
Local Similarity-based Statistical Fusion.)
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Table 5-I. DICE-Sørensen similarity coefficient (DSC, %) of thirteen segmented organs
(mean ± standard deviation of 236 cases).

Structure 3D U-net HFCN FCN MV OAN MV OAN-RC MV OAN-RC LSSF
Aorta 87.0±12.3 88.3± 8.8 85.0±4.2 85.5± 4.2 85.3± 4.1 91.8± 3.5
Colon 77.0±11.0 79.3± 9.2 80.3± 9.1 81.5± 9.4 82.0± 8.8 83.0± 7.4

Duodenum 66.8±12.8 70.3± 10.4 70.2±11.3 72.6±11.4 73.4±11.1 75.4± 9.1
Gallbladder 85.4±10.3 87.9± 7.5 87.8± 8.3 88.9± 6.2 89.4± 6.1 90.5± 5.3

IVC 80.8±10.2 84.7± 5.9 84.0± 6.0 85.6± 5.8 86.0± 5.5 87.0± 4.2
Kidney(L) 83.9±22.4 95.2± 2.6 96.1± 2.0 96.2± 2.2 95.9± 2.3 96.8± 1.9
Kidney(R) 88.0±14.4 95.6± 4.5 95.8± 4.9 95.9± 4.9 96.0± 2.5 98.4± 2.1

Liver 91.4± 9.9 95.7± 1.8 96.8± 0.8 97.0± 0.9 97.0± 0.8 98.0± 0.7
Pancreas 79.3±11.7 81.4±10.8 84.3± 4.9 86.2± 4.5 86.6± 4.3 87.8± 3.1

Small bowel 69.9±17.3 71.1±15.0 76.9±14.0 78.0±13.8 79.0±13.4 80.1±10.2
Spleen 89.6±9.5 93.1± 2.1 96.3± 1.9 96.4± 1.9 96.4± 1.7 97.1± 1.5

Stomach 90.1± 7.2 93.2± 5.4 93.9± 3.2 94.2± 2.9 94.2± 3.0 95.2± 2.6
Veins 60.7±23.7 74.5±10.5 74.8±10.7 76.8±11.2 77.4±12.1 80.7± 9.3

Table 5-II. Average surface distances of thirteen segmented organs for all 236 cases (mean
± standard deviation of average surface distances in mm).

Structure 3D U-net HFCN FCN MV OAN MV OAN-RC MV OAN-RC LSSF
Aorta 0.44 ±1.01 0.42±0.58 0.56±0.47 0.47±0.42 0.44±0.28 0.39±0.21
Colon 6.75±9.01 6,35±8.12 6.27±7.44 5.65±7.25 4.07±5.72 3.59±4.17

Duodenum 2.01±2.46 1.70±2.18 1.71±2.25 1.49±1.87 1.54±1.43 1.36±1.31
Gallbladder 1.31±0.76 1.21±0.50 1.22±0.52 1.12±0.50 1.05±0.41 0.95±0.37

IVC 1.57±1.53 1.15±1.05 1.26±1.08 1.16±1.38 1.12±1.24 1.08±1.03
Kidney(L) 0.77±1.04 0.41±0.42 0.36±0.47 0.34±0.47 0.30±0.33 0.30±0.30
Kidney(R) 1.39±2.01 1.03±1.68 1.05±1.74 0.74±1.32 0.54±1.09 0.45±0.89

Liver 1.89±3.21 1.60± 0 1.61±2.98 1.39±2.64 1.32±1.74 1.23±1.52
Pancreas 1.78±1.05 1.51±0.80 1.41±0.88 1.19±0.82 1.17±0.72 1.05±0.65

Small bowel 4.21±5.78 4.01±6.01 3.91±6.05 3.20±4.05 3.37±5.48 3.01±3.35
Spleen 0.98±0.56 0.59±0.37 0.60±0.36 0.56±0.40 0.47 ±0.27 0.42±0.25

Stomach 2.78±5.89 2.50±5.02 2.51±5.13 2.36±5.65 1.88±1.64 1.68±1.55
Veins 2.31±4.51 1.75±3.51 1.69±3.61 1.92±6.48 1.40±3.61 1.21±3.05

our proposed OAN-RC with LSSF, which is visually indistinguishable from manual

segmentation for almost all target structures.

The OAN-RC training and testing can be computed in parallel for each view

direction. In our experiments, the training took 40 hours for 120, 000 iterations for

177 training cases and the average testing time for each volume was 76.73 seconds.

The fusion time depended on the volume of the target structure, and the average

computation time for 13 organs was 6.87 seconds.
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Figure 5-9. 3D photo-realistic rendering of the ground-truth (left) and the results from
OAN-RC with statistical fusion (right). The aorta, duodenum, IVC, liver, kidneys, pancreas,
duodenum, spleen, and stomach are rendered. The difference between our results and the
ground-truth are almost visually indistinguishable. To differentiate adjacent organs and
from manual segmentation, different color setting were applied to the our methods results.

5.5 Discussion

Multi-organ segmentation using OAN-RCs alone, without the statistical fusion, gave

similar or better performance compared with the state-of-the-art approaches summa-

rized in [64]. In the specific case of the pancreas, state-of-the-art methods showed

(mean ± standard deviations) segmentation accuracies as 74.4± 20.2(%) on 140 cases

[157], 78.5±14.0(%) on 150 cases [64], 78.0±8.2(%) on 82 cases [8] and 75.74±10.47(%)

(on the whole slice) versus 82.4± 5.7(%) (reduced region of interest) on 82 cases [13]

in terms of DSC. We cannot make a direct comparison because in these datasets CT

images and manual segmentations (i.e., annotation) for the ground-truth are different

from each other. But our OAN-RCs segmentations on our larger dataset shows similar

or better performances in terms of DSC. Among target organs, our performance on

structures such as gallbladder and pancreas, whose sizes are relatively small and have

particularly weak boundaries improves significantly from using basic FCNs or using

OANs without reverse connections.
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Moreover, as shown in section 5.4, our statistical fusion based on local structural

similarity improves the overall segmentation accuracies in terms of both DSC and aver-

age surface distances. In particular, there are significant performance improvements for

the minimum values as shown in Figure 5-8, which helps explain the robustness of the

algorithm. The differences can be depicted more clearly by visualizing the 3D surfaces

as shown in Figure 5-10 and Figure 5-11. The noise of the deep network segmentations

is distributed over large regions, without much connectivity, and occasionally they show

significantly different patterns. But our fusion step exploits structural similarity which

outputs clean and smooth boundaries by effectively combining different information

based on the local structure of the original 3D volume.

When applying our proposed method and interpreting the evaluation results, we

must address several considerations. As shown in our experiments, our proposed

algorithm also outperforms 3D patch based approaches. But 3D (isotropic) patch-

based approaches have several issues which make it hard to apply to this problem. To

make bigger patch size, they require more parameters and hence require more training

data or, if this is not available, significant data augmentation (e.g, by scaling, rotation,

and elastic deformation). In addition, there can be practical memory limitation on

GPUs which restricts the expandable patch size. The limited patch size means that

the deep networks receptive field sizes contains only limited local information which is

problematic for multi-organ segmentation and the discontinuities between the patches

also raises problems. It is possible that solutions to these three problems may make

3D patch based methods work better in the future. Unlike 3D approaches, the local

structure-similarity used in our fusion method effectively combine the information

from anisotropic patches to 3D at each voxel.

The ground-truth used in this study for training and evaluation was specified using

manual annotations by human observers. It is well known that there can be significant

inter-/intra-observer variations in manual segmentation. But, as explained before,
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(a) Liver (upper) and Pancreas (lower)

(b) Pancreas (Upper) and Duodenum (lower)

Figure 5-10. Effects of local structural similarity-based statistical fusion (LSSF) for
estimating 3D surfaces. From left to right, the manual segmentation (ground-truth),
initial segmentations from OAN-RCs with X, Y, Z slices, and the results of our proposed
algorithm with statistical fusion. (a) When SX , SY , and SZ show similar result, statistical
fusion produces smoother and less-noisy boundaries. (b) Surface estimation examples when
initial OAN-RCs give differing results. But our approach effectively fuses the information,
exploiting the local structural similarity.
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(a)

(b)

Figure 5-11. Examples of FCN, OAN, OAN-RC, and OAN-RC. The manual segmentation
(ground-truth), FCN MV, OAN MV, OAN-RC MV, OAN-RC LSFF (from left to right).
(a) Pancreas: DSC(%) and surface distances (mean± standard deviation in mm) to the
ground-truth are 72.5 and 2.13± 1.74 (FCN MV), 77.2 and 1.90± 1.77 (OAN MV), 82.4
and 1.33± 1.31 (OAN-RC MV), and 85.5 and 0.71± 0.81 (OAN-RC LSSF), respectively.
(b) Stomach: DSC(%) and surface distances (mean± standard deviation in mm) to the
ground-truth are 92.5 and 2.44± 1.27 (FCN MV), 93.6 and 1.63± 1.14 (OAN MV), 94.9
and 2.25± 1.30 (OAN-RC MV), and 97.1 and 1.26± 0.88 (OAN-RC LSSF), respectively.
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the ground-truth was created by four human observers and checked by experts in a

visual way, and we randomly divided testing groups in our 4-fold cross-validation to

avoid biased comparison. However, it is still possible that inaccuracies due to human

variability may affect the evaluation as well as the training. This can be further

intensively explored as separate experiments.

Another possible consideration when applying the proposed approach is the image

quality which can affect both of manual annotations and deep network segmentation

results. Various factors such as spatial resolution, level of artifacts and reconstruction

kernels should be considered. The dataset used in this study has been collected

between 2005 to 2009 in the same institute with control over the scanning parameters.

As explained in Section 5.4, the CT protocol is the portal venous phase and the spatial

resolution is almost isotropic. But different scanning parameters and artifacts may

affect our algorithms performance when applied to other datasets.

The same issues about manual segmentations and image qualities can be raised

in general segmentation and evaluations. Specifically for our proposed approach,

especially in the fusion step, the way of computing priori, P (T ), used in Eqn. (5.21)

can in practice affect the final segmentation. But considering that the deep network

segmentation results from different viewing-directions are independently obtained, the

mean can be accepted in general. However, if the deep network segmentations show

clear tendencies towards over-estimation or under-estimation, then different types of

models for priors may need to be used in order to improve the final result for practical

applications.

One of the main advantages of our algorithm is the efficient computation time. The

segmentation of 13 organs of the whole volume takes similar to or less than 1 minute

with better performance reported than the state-of-the-art methods [64]. Hence our

approach can be practically useful in clinical environments.
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5.6 Summary

In this chapter, we proposed a novel framework for multi-organ segmentation using

OAN-RCs with statistical fusion exploiting structural similarity. Our two-stage organ-

attention network reduces uncertainties at weak boundaries, focuses attention on

organ regions with simple context, and adjusts FCN error by training the combination

of original images and OAMs. Reverse connections deliver abstract level semantic

information to lower layers so that hidden layers can be assisted to contain more

semantic information and give good results even for small organs. The results are

improved by the statistical fusion, based on local structural similarity, which smooths

our noise and removes biases leading to better overall segmentation performance in

terms of DSC and surface distances. We showed that our performance is better than

previous state-of-the-art algorithms. Our framework is not specific to any particular

body region, but gives high quality and robust results for abdominal CTs, which are

typically challenging regions due to their low contrast, large intra-/inter-variations,

and different scales. In addition, the efficient computational time of our algorithm

makes our approach practical for clinical environments such as CAD, CAS or RT.
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Chapter 6

Semi-Supervised 3D Abdominal
Multi-Organ Segmentation via
Deep Multi-Planar Co-Training

In multi-organ segmentation of abdominal CT scans, most existing fully supervised

deep learning algorithms require lots of voxel-wise annotations, which are usually

difficult, expensive, and slow to obtain. In comparison, massive unlabeled 3D CT

volumes are usually easily accessible. Current mainstream works to address semi-

supervised biomedical image segmentation problem are mostly graph-based. By

contrast, deep network based semi-supervised learning methods have not drawn much

attention in this field. In this chapter, we propose Deep Multi-Planar Co-Training

(DMPCT), whose contributions can be divided into two folds: 1) The deep model is

learned in a co-training style which can mine consensus information from multiple

planes like the sagittal, coronal, and axial planes; 2) Multi-planar fusion is applied

to generate more reliable pseudo-labels, which alleviates the errors occurring in the

pseudo-labels and thus can help to train better segmentation networks. Experiments

are done on our newly collected large dataset with 100 unlabeled cases as well as

210 labeled cases where 16 anatomical structures are manually annotated by four

radiologists and confirmed by a senior expert. The results suggest that DMPCT

significantly outperforms the fully supervised method by more than 4% especially
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when only a small set of annotations is used.

6.1 Introduction

Multi-organ segmentation of radiology images is a critical task which is essential to

many clinical applications such as computer-aided diagnosis, computer-aided surgery,

and radiation therapy. Compared with other internal human structures like brain or

heart, segmenting abdominal organs appears to be much more challenging due to the

low contrast and high variability of shape in CT images. In this chapter, we focus on

the problem of multi-organ segmentation in abdominal regions, e.g., liver, pancreas,

kidney, etc.

Fully supervised approaches can usually achieve high accuracy with a large labeled

training set which consists of pairs of radiology images as well as their corresponding

pixel-wise label maps. However, it is quite time-consuming and costly to obtain such a

large training set especially in the medical imaging domain due to the following reasons:

1) precise annotations of radiology images must be hand annotated by experienced

radiologists and carefully checked by additional experts and 2) contouring organs or

tissues in 3D volumes requires tedious manual input. By contrast, large unannotated

datasets of CT images are much easier to obtain. Thereby our study mainly focuses

on multi-organ segmentation in a semi-supervised fashion, i.e., how to fully leverage

unlabeled data to boost performance, so as to alleviate the need for such a large

annotated training set.

In the biomedical imaging domain, traditional methods for semi-supervised learning

usually adopt graph-based methods [109, 110] with a clustering assumption to segment

pixels (voxels) into meaningful regions, e.g., superpixels. These methods were studied

for tissue or anatomical structures segmentation in 3D brain MR images, ultrasound

images, etc. Other machine learning methods such as kernel-based large margin
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algorithms [111] have been suggested for white matter hyperintensities segmentation.

Although widely applied to biomedical imaging segmentation tasks in the past decade,

the traditional methods cannot always produce a satisfactory result due to the lack of

advanced techniques.

With the recent advance of deep learning and its applications [35, 158–160], fully

convolutional networks (FCNs) [41] have been successfully applied to many biomedical

segmentation tasks such as neuronal structures segmentation [45, 93, 101, 161], single

organ segmentation [8, 13, 16], and multi-organ segmentation [18, 75, 128] in a fully

supervised manner. Their impressive performances have shown that we are now

equipped with much more powerful techniques than traditional methods. Nevertheless,

network-based semi-supervised learning for biomedical image segmentation has not

drawn enough attention. The current usage of deep learning for semi-supervised

multi-organ segmentation in the biomedical imaging domain is to train an FCN on

both labeled and unlabeled data, and alternately update automated segmentations

(pseudo-labels) for unlabeled data and the network parameters [10]. However, if

an error occurs in the initial pseudo-label of the unlabeled data, the error will be

reinforced by the network during the following iterations. How to improve the quality

of pseudo-labels for unlabeled data hence becomes a promising direction to alleviate

this negative effect.

In our approach, we exploit the fact that CT scans are high-resolution three-

dimensional volumes which can be represented by multiple planes, i.e., the axial,

coronal, and sagittal planes. Taking advantages of this multi-view property, we propose

Deep Multi-Planar Co-Training (DMPCT), a systematic EM-like semi-supervised

learning framework. DMPCT consists of a teacher model, a multi-planar fusion

module, and a student model. While the teacher model is trained from multiple

planes separately in a slice-by-slice manner with a few annotations, the key advantage

of DMPCT is that it enjoys the additional benefit of continuously generating more
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Figure 6-1. Illustration of the Deep Multi-Planar Co-Training (DMPCT) framework. (a)
We first train a teacher model on the labeled dataset. (b) The trained model is the used
to assign pseudo-labels to the unlabeled data using our multi-planar fusion module as
demonstrated in Figure 6-2. (c) Finally, we train a student model over the union of both
the labeled and the unlabeled data. Step (b) and (c) are performed in an iterative manner.

reliable pseudo-labels by the multi-planar fusion module, which can afterward help

train the student model by making full usage of massive unlabeled data. As there are

multiple segmentation networks corresponding to different planes in the teacher model

and the student model, co-training [12, 113] is introduced so that these networks can

be trained simultaneously in our unified framework and benefit from each other. We

evaluate our algorithm on our newly collected large dataset and observe a significant

improvement of 4.23% compared with the fully supervised method. At last, as DMPCT

is a generic and flexible framework, it can be envisioned that better backbone models

and fusion strategies can be easily plugged into our framework. Our unified system

can be also practically useful for current clinical environments due to the efficiency in

leveraging massive unlabeled data to boost segmentation performance.
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6.2 Deep Multi-Planar Co-Training

We propose Deep Multi-Planar Co-Training (DMPCT), a semi-supervised multi-organ

segmentation method which exploits multi-planar information to generate pseudo-

labels for unlabeled 3D CT volumes. Assume that we are given a 3D CT volume

dataset S containing K organs. This includes labeled volumes SL = {(Im, Ym)}l
m=1

and unlabeled volumes SU = {Im}M
m=l+1, where Im and Ym denote a 3D input volume

and its corresponding ground-truth segmentation mask. l and M − l are the numbers

of labeled and unlabeled volumes, respectively. Typically l ≪ M . As shown in

Figure 6-1, DMPCT involves the following steps:

• Step 1: train a teacher model on the manually labeled data SL in the fully

supervised setting (see Section 6.2.1).

• Step 2: the trained model is then used to assign pseudo-labels {Ŷm}M
m=l+1 to

the unlabeled data SU by fusing the estimations from all planes (see Section

6.2.2).

• Step 3: train a student model on the union of the manually labeled data and

automatically labeled data SL ∪ {(Im, Ŷm)}M
m=l+1 (see Section 6.2.3).

• Step 4: perform step 2 & 3 in an iterative manner.

6.2.1 Teacher Model

We train the teacher model on the labeled dataset SL. By splitting each volume and

its corresponding label mask from the sagittal (S), coronal (C), and axial (A) planes,

we can get three sets of 2D slices, i.e., SV
L = {(IV

n , YV
n )}NV

n=1, V ∈ {S, C, A}, where NV

is the number of 2D slices obtained from plane V . We train a 2D-FCN model (we use

[41] as our reference CNN model throughout this chapter) to perform segmentation

from each plane individually.
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Figure 6-2. Illustration of the multi-planar fusion module, where the input 3D volume is
first parsed into 3 sets of slices along the sagittal, coronal, and axial planes to be evaluated
respectively. Then the final 3D estimation is obtained by fusing predictions from each
individual plane.

Without loss of generality, let IV ∈ RW ×H and YV = {yV
i }W ×H

i=1 denote a 2D

slice and its corresponding label mask in SV
L , where yV

i ∈ {0, 1, . . . , K} is the organ

label (0 means background) of the i-th pixel in IV . Consider a segmentation model

MV : Ŷ = f
(︂
IV ; θ

)︂
, where θ denotes the model parameters and Ŷ denotes the

prediction for IV . Our objective function is

L(IV , YV ; θ) = − 1
W ×H

[︄
W ×H∑︂

i=1

K∑︂
k=0

1(yV
i = k) log pV

i,k

]︄
, (6.1)

where pV
i,k denotes the probability of the i-th pixel been classified as label k on 2D

slice IV and 1(·) is the indicator function. We train the teacher model by optimizing

L w.r.t. θ by stochastic gradient descent.

6.2.2 Multi-Planar Fusion Module

Given a well-trained teacher model {MV |V ∈ {S, C, A}}, our goal of the multi-planar

fusion module is to generate the pseudo-labels {Ŷm}M
m=l+1 for the unlabeled data

SU.We first make predictions on the 2D slices from each plane and then reconstruct

the 3D volume by stacking all slices back together. Several previous studies [162,
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Figure 6-3. An example of 3D predictions reconstructed from the sagittal, coronal, and
axial planes as well as their fusion output. Estimations from single planes are already
reasonably well, whereas the single fusion outcome is superior to estimation from any
single plane.

163] suggest that combining predictions from multiple views can often improve the

accuracy and the robustness of the final decision since complementary information can

be exploited from multiple views simultaneously. Thereby, the fused prediction from

multiple planes is superior to any estimation of a single plane. The overall module is

shown in Figure 6-2.

More specifically, majority voting is applied to fuse the hard estimations by seeking

an agreement among different planes. If the predictions from all planes do not agree

on a voxel, then we select the prediction for that voxel with the maximum confidence.

As simple as this strategy might sound, this method has been shown to result in

highly robust and efficient outcome in various previous studies [13, 162–164]. The

final decision for the i-th voxel y⋆
i of Ŷm is computed by:

y⋆
i =

⎧⎨⎩yV
i , if ∃ V, V ′ ∈ {S, C, A}, V ̸= V ′ | yV

i = yV ′
i

yV ⋆

i , otherwise
, (6.2)

where V ⋆ = arg max
V ∈{S,C,A}

max
j

pV
i,j. pS

i,j, pC
i,j, and pA

i,j denote the probabilities of the i-th

pixel classified as label j from the sagittal, coronal, and axial planes, respectively. yV
i

denotes the hard estimation for the i-th pixel on plane V , i.e., yV
i = arg max

j
pV

i,j.

As shown in Figure 6-3, our multi-planar fusion module improves both over- and

under-estimation by fusing aspects from different planes and therefore yields a much
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Algorithm 3 Multi-planar co-training for multi-organ segmentation
Require: A set of labeled data SL = {(Im, Ym)}l

m=1 and unlabeled volumes SU =
{Im}M

m=l+1.
Ensure: A trained multi-organ segmentation model {MS,MC,MA}.
S ← SL
for t = 1 to T do

Parse S into SS, SC ,SA;
Train MS, MC, and MA on SS, SC, and SA respectively;
Generate pseudo-class labels {Ŷm}M

m=l+1 for the unlabeled dataset SU by
Eqn. (6.2);
Augment the training set by adding the self-labeled examples to S, i.e., S =
SL ∪ {(Im, Ŷm)}M

m=l+1.
end for
Parse S into SS, SC ,SA.
Train MS, MC, and MA on SS, SC, and SA respectively.

better outcome. Note that other rules [18, 165] can also be easily adapted to this

module. We do not focus on discussing the influence of the fusion module here,

although intuitively a stronger fusion module should lead to a higher performance.

6.2.3 Student Model

After generating the pseudo-labels {Ŷm}M
m=l+1 for the unlabeled dataset SU, the

training set can be then enlarged by taking the union of both the labeled and the

unlabeled dataset, i.e., S = SL ∪ {(Im, Ŷm)}M
m=l+1. The student model is trained on

this augmented dataset S the same way we train the teacher model as described in

Section 6.2.1. The overall training procedure is summarized in Algorithm 3. In the

training stage, we first train a teacher model in a supervised manner and then use it to

generate the pseudo-labels for the unlabeled dataset. Then we alternate the training of

the student model and the pseudo-label generation procedures in an iterative manner

to optimize the student model T times. In the testing stage, we follow the method in

Section 6.2.2 to generate the final estimation using the T -th student model.

6.3 Experiments
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6.3.1 Dataset and Evaluation

Our fully-labeled dataset includes 210 contrast-enhanced abdominal clinical CT images

in the portal venous phase, in which we randomly choose 50/30/80 patients for training,

validation, and testing, unless otherwise specified. A total of 16 structures (Aorta,

Adrenal gland, Celiac AA, Colon, Duodenum, Gallbladder, Interior Vena Cava (IVC),

Kidney (left, right), Liver, Pancreas, Superior Mesenteric Artery (SMA), Small bowel,

Spleen, Stomach, Veins) for each case were segmented by four experienced radiologists,

and confirmed by an independent senior expert. Our unlabeled dataset consists of

100 unlabeled cases acquired from a local hospital. To the best of our knowledge,

this is the largest abdominal CT dataset with the most number of organs segmented.

Each CT volume consists of 319 ∼ 1051 slices of 512 × 512 pixels, and have voxel

spatial resolution of ([0.523 ∼ 0.977]× [0.523 ∼ 0.977]× 0.5)mm3. The metric we use

is the Dice-Sørensen Coefficient (DSC), which measures the similarity between the

prediction voxel set Z and the ground-truth set Y, with the mathematical form of

DSC(Z,Y) = 2×|Z∩Y|
|Z|+|Y| . For each organ, we report an average DSC together with the

standard deviation over all the testing cases.

6.3.2 Implementation Details

We set the learning rate to be 10−9. The teacher model and the student model

are trained for 80, 000 and 160, 000 iterations respectively. The validation set is

used for tuning the hyper-parameters. Similar to [166], we use three windows of

[−125, 275], [−160, 240], and [−1000, 1000] Housefield Units as the three input

channels respectively. The intensities of each slice are rescaled to [0.0, 1.0]. Similar to

[13, 14, 18], we initialize the network parameters θ by using the FCN-8s model [41]

pre-trained on the PascalVOC image segmentation dataset. The iteration number T

in Algorithm 3 is set to 2, i.e., T = 2, as the performance of the validation set gets

saturated.
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Table 6-I. The comparison of segmentation accuracy (DSC, %) by using 50 labeled data
and varying the number of unlabeled data (e.g., 50-0 indicates 50 labeled data and 0
unlabeled data). We report the mean and standard deviation over 80 cases. The p-values
for testing significant difference between DMPCT (50-100) and FCN (50-0) are shown.
Significant statistical improvement is shown in italic with p < 0.05. See Section 6.3.3 for
definitions of FCN, SPSL, and DMPCT (Ours).

Organ Type FCN SPSL DMPCT (Ours) p-value
50 - 0 50 - 50 50 - 100 50 - 50 50 - 100

Aorta 89.14± 7.95 91.10± 5.52 90.76± 5.90 91.43± 4.88 91.54± 4.65 3 .32 × 10 −5

Adrenal gland 26.45± 12.1 29.92± 14.7 26.93± 15.6 30.58± 12.7 35.48± 11.8 1 .98 × 10 −15

Celiac AA 35.01± 19.7 37.27± 19.0 39.78± 18.4 36.25± 20.5 40.50± 18.9 1 .00 × 10 −5

Colon 71.81± 14.9 78.28± 13.0 79.58± 12.9 79.61± 12.3 80.53± 11.6 7 .69 × 10 −12

Duodenum 54.89± 15.5 57.77± 17.3 62.22± 14.8 66.95± 12.6 64.78± 13.8 1 .95 × 10 −19

Gallbladder 86.53± 6.21 87.87± 5.45 88.02± 5.83 88.45± 5.07 87.77± 6.29 0 .002
IVC 77.67± 9.49 81.28± 8.87 82.63± 7.31 83.49± 6.94 83.43± 7.02 9 .30 × 10 −14

Kidney (L) 95.12± 5.01 95.59± 4.97 95.88± 3.68 95.82± 3.60 96.09± 3.42 3 .69 × 10 −6

Kidney (R) 95.69± 2.36 95.77± 4.93 96.14± 2.94 96.17± 2.75 96.26± 2.29 1 .74 × 10 −7

Liver 95.45± 2.41 96.06± 0.99 96.07± 1.03 96.11± 0.97 96.15± 0.92 0 .005
Pancreas 76.49± 11.6 80.12± 7.52 80.93± 6.84 81.46± 6.32 82.03± 6.16 2 .97 × 10 −8

SMA 52.26± 17.1 51.81± 18.2 51.94± 17.1 49.40± 19.2 52.70± 17.7 0.667
Small bowel 71.13± 13.1 78.93± 12.6 79.97± 12.8 79.49± 12.1 79.25± 12.6 2 .53 × 10 −22

Spleen 94.81± 2.64 95.46± 2.09 95.58± 1.90 95.73± 2.03 95.98± 1.59 1 .83 × 10 −10

Stomach 91.38± 3.94 92.62± 3.71 92.92± 3.65 93.33± 3.47 93.42± 3.21 3 .30 × 10 −23

Veins 64.75± 15.4 70.43± 14.3 69.66± 14.6 69.82± 14.5 70.23± 14.4 4 .16 × 10 −15

Mean 73.71± 9.97 76.32± 9.58 76.87± 9.08 77.20± 8.75 77.94± 8.51 4 .74 × 10 −90

6.3.3 Comparison with the Baseline

We show that our proposed DMPCT works better than other methods: 1) fully

supervised learning method [41] (denoted as FCN), and 2) single planar based semi-

supervised learning approach [10] (denoted as SPSL). Both 1) and 2) are applied on

each individual plane separately, and then the final result is obtained via multi-planar

fusion (see Sec 6.2.2). As shown in Table 6-I, with 50 labeled data, by varying the

number of unlabeled data from 0 to 100, the average DSC of DMPCT increases

from 73.71% to 77.94% and the standard deviation decreases from 9.97% to 8.51%.

Compared with SPSL, our proposed DMPCT can boost the performance in both

settings (i.e., 50 labeled data + 50 unlabeled data and 50 labeled data + 100 unlabeled

data). Besides, the p-values for testing significant difference between our DMPCT (50

labeled data + 100 unlabeled data) and FCN (50 labeled data + 0 unlabeled data)
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Figure 6-4. Performance comparison (DSC, %) in box plots of 16 organs by using 50
labeled data and varying the number of unlabeled data (e.g., 50-0 indicates 50 labeled
data and 0 unlabeled data). See Section 6.3.3 for definitions of FCN and DMPCT (Ours).

for 16 organs are shown in the last column of Table 6-I, which suggests significant

statistical improvements among almost all organs. Figure 6-4 shows comparison results

of our DMPCT and the fully supervised method by box plots.

It is noteworthy that greater improvements are observed especially for those difficult

organs, i.e., organs either small in sizes or with complex geometric characteristics.

Table 6-I indicates that our DMPCT approach boosts the segmentation performance

of these small hard organs by 5.54% (Pancreas), 8.72% (Colon), 9.89% (Duodenum),

8.12% (Small bowels) and 5.48% (Veins), 5.76% (IVC). This promising result indicates

that our method distills a reasonable amount of knowledge from the unlabeled data.

An example is shown in Figure 6-5. In this particular case, the DSCs for Celiac

AA, Colon, Duodenum, IVC, Pancreas and Veins are boosted from 60.13%, 46.79%,

71.08%, 69.23%, 63.48% to 79.45%, 83.81%, 77.59%, 74.75%, 75.31% respectively.
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Figure 6-5. Comparisons among FCN, SPSL, and DMPCT (Ours) viewed from multiple
planes. 50 labeled cases are used for all methods. 100 unlabeled cases are used for the
SPSL and DMPCT. For this particular case, FCN obtains an average DSC of 72.75%,
SPSL gets 78.87%, and DMPCT (Ours) gets 80.75%. See Section 6.3.3 for definitions of
FCN, SPSL, and DMPCT (Ours). Best viewed in color.

6.3.4 Results and Discussion

Amount of labeled data. For ablation analysis, we enlarge the labeled training

set to 100 cases and keep the rest of the settings the same. As shown in Figure 6-6,

with more labeled data, the semi-supervised methods (DMPCT, SPSL) still obtain

better performance than the supervised method (FCN), while the performance gain

becomes less prominent. This is probably because the network is already trained well

when large training set is available. We believe that if much more unlabeled data

can be provided the performance should go up considerably. In addition, we find

that DMPCT outperforms SPSL in every setting, which further demonstrates the

usefulness of multi-planar fusion in our co-training framework.

Comparison with 3D network-based self-training. Various previous studies [15,

90



73.71

76.32

76.87

77.2

77.94

77.13

77.49
77.76

77.61

78.22

73

74

75

76

77

78

79

FCN

(50-0)

SPSL

(50-50)

SPSL

(50-100)

Ours

(50-50)

Ours

(50-100)

FCN

(100-0)

SPSL

(100-50)

SPSL

(100-100)

Ours

(100-50)

Ours

(100-100)

D
S

C
 (

%
)

Figure 6-6. Ablation study on numbers of labeled data and unlabeled data. Mean DSC
of all testing cases under all settings (e.g., 50-0 indicates 50 labeled data and 0 unlabeled
data). See Section 6.3.3 for definitions of FCN, SPSL, and DMPCT (Ours).

Table 6-II. Cross-dataset generalization results.

Organ Spleen Kidney (R) Kidney (L) Gall Bladder Liver
FCN 71.85± 26.13 54.44± 20.04 54.98± 26.63 48.13± 26.07 85.46± 16.81
DMPCT (Ours) 83.68± 16.53 71.36± 20.85 69.95± 20.50 60.05± 26.91 92.11± 6.46
Organ Stomach Aorta IVC Veins Pancreas
FCN 38.89± 23.86 70.43± 19.70 53.67± 18.40 35.54± 18.94 39.40± 25.34
DMPCT (Ours) 54.78± 26.57 76.05± 15.99 68.18± 14.58 37.52± 15.86 60.05± 16.61

18, 167] demonstrate that 2D multi-planar fusion outperforms directly 3D learning in

the fully supervised setting. 3D CNNs come with an increased number of parameters,

significant memory and computational requirements. Due to GPU memory restrictions,

these 3D CNN approaches which adopt the sliding-window strategy do not act on the

entire 3D CT volume, but instead on local 3D patches [48, 65, 143]. This results in

the lack of holistic information and low efficiency. In order to prove that DMPCT

outperforms direct 3D learning in the semi-supervised setting, we also implement a

patch-based 3D UNet [143]. 3D UNet gets 69.66% in terms of mean DSC using 50

labeled data. When adding 100 unlabeled data the performance even drops to 65.21%.

This clearly shows that in 3D learning the teacher model is not trained well, thus the
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errors of the pseudo-labels are reinforced during student model training.

Comparison with traditional co-training. In order to show that our DMPCT

outperforms traditional co-training algorithm [12], we also select only the most con-

fident samples during each iteration. Here the confidence score is measured by the

entropy of probability distribution for each voxel in one slice. Under the setting of

50 labeled cases and 50 unlabeled cases, we select top 5000 samples with the highest

confidence in each iteration. The whole training process takes about 6-7 iterations

for each plane. The complete training requires more than 50 hours. Compared with

our approach, this method requires much more time to converge. It obtains a mean

DSC of 76.52%, slightly better than SPSL but worse than our DMPCT, which shows

that selecting the most confident samples during training may not be a wise choice

for deep network based semi-supervised learning due to its low efficiency.

Cross dataset generalization We apply our trained DMPCT model (50 labeled

data + 100 unlabeled data) and baseline FCN model (50 labeled data + 0 unlabeled

data) on a public available abdominal CT datasets1 with 13 anatomical structures

labeled without any further re-training on new data cases. 10 out of the 13 structures

are evaluated which are also manually annotated in our own dataset and we find

that our proposed method improves the overall mean DSC and also reduces the

standard deviation significantly, as shown in Table 6-II. The overall mean DSC as

well as the standard deviation for the 10 organs is improved from 59.23± 22.20% to

67.38± 19.64%. We also directly test our models on the NIH pancreas segmentation

dataset of 82 cases2 and observe that our DMPCT model achieves an average DSC of

66.16%, outperforming the fully supervised method, with an average DSC of 58.73%,

by more than 7%. This may demonstrate that our approach, which leverages more

unlabeled data from multiple planes, turns out to be much more generalizable than
130 training data sets at https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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the baseline model.

Computation time. In our experiments, the teacher model training process takes

about 4.94 hours on an NVIDIA TITAN Xp GPU card for 80, 000 iterations over all

the training cases. The average computation time for generating pseudo-label as well

as testing per volume depends on the volume of the target structure, and the average

computation time for 16 organs is approximately 4.5 minutes, which is comparable to

other recent methods [8, 13] even for single structure inference. The student model

training process takes about 9.88 hours for 160, 000 iterations.

6.4 Summary

In this chapter, we present a systematic framework DMPCT for multi-organ segmenta-

tion in abdominal CT scans, which is motivated by the traditional co-training strategy

to incorporate multi-planar information for the unlabeled data during training. The

pseudo-labels are iteratively updated by inferencing comprehensively on multiple

configurations of unlabeled data with a multi-planar fusion module. We evaluate our

approach on our own large newly collected high-quality dataset. The results show

that 1) our method outperforms the fully supervised learning approach by a large

margin; 2) it outperforms the single planar method, which further demonstrates the

benefit of multi-planar fusion; 3) it can learn better if more unlabeled data provided

especially when the scale of labeled data is small.

Our framework can be practical in assisting radiologists for clinical applications

since the annotation of multiple organs in 3D volumes requires massive labor from

radiologists. Our framework is not specific to a certain structure, but shows robust

results in multiple complex anatomical structures within efficient computational time.

It can be anticipated that our algorithm may achieve even higher accuracy if a more

powerful backbone network or an advanced fusion algorithm is employed, which we
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leave as the future work.
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Chapter 7

Prior-aware Neural Network for
Partially-Supervised Multi-Organ
Segmentation

Accurate multi-organ abdominal CT segmentation is essential to many clinical appli-

cations such as computer-aided intervention. As data annotation requires massive

human labor from experienced radiologists, it is common that training data are par-

tially labeled, e.g., pancreas datasets only have the pancreas labeled while leaving

the rest marked as background. However, these background labels can be misleading

in multi-organ segmentation since the “background” usually contains some other

organs of interest. To address the background ambiguity in these partially-labeled

datasets, we propose Prior-aware Neural Network (PaNN) via explicitly incorporat-

ing anatomical priors on abdominal organ sizes, guiding the training process with

domain-specific knowledge. More specifically, PaNN assumes that the average organ

size distributions in the abdomen should approximate their empirical distributions,

prior statistics obtained from the fully-labeled dataset. As our training objective

is difficult to be directly optimized using stochastic gradient descent, we propose

to reformulate it in a min-max form and optimize it via the stochastic primal-dual

gradient algorithm. PaNN achieves state-of-the-art performance on the MICCAI2015

challenge “Multi-Atlas Labeling Beyond the Cranial Vault”, a competition on organ
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Figure 7-1. 3D Visualization of several abdominal organs (liver, spleen, left kidney, right
kidney, aorta, inferior vena cava) to show the similarity of patient-wise abdominal organ
size distributions.

segmentation in the abdomen. We report an average Dice score of 84.97%, surpassing

the prior art by a large margin of 3.27%.

7.1 Introduction

This work focuses on multi-organ segmentation in abdominal regions which contain

multiple organs such as liver, pancreas and kidneys. The segmentation of internal

structures on medical images, e.g., CT scans, is an essential prerequisite for many

clinical applications such as computer-aided diagnosis, computer-aided intervention

and radiation therapy. Compared with other internal structures such as heart or brain,

abdominal organs are much more difficult to segment due to the morphological and

structural complexity, low contrast of soft tissues, etc.

With the development of deep convolutional neural networks (CNNs), many

medical image segmentation problems have achieved satisfactory results only when

full-supervision is available [8, 13, 14, 66, 101, 102]. Despite the recent progress, the

annotation of medical radiology images is extremely expensive, as it must be handled
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Figure 7-2. Overview of the proposed PaNN for partially-supervised multi-organ segmen-
tation. It is trained with a small set of fully-labeled dataset and several partially-labeled
datasets. The PaNN regularizes that the organ size distributions of the network out-
put should approximate their prior statistics in the abdominal region obtained from the
fully-labeled dataset.

by experienced radiologists and carefully checked by additional experts. This results

in the lack of high-quality labeled training data. More critically, how to efficiently

incorporate domain-specific expertise (e.g., anatomical priors) with segmentation

models [122, 127], such as the organ shape, size, remains an open issue.

Our key observation is that, in medical image analysis domain, instead of scrib-

bles [168–170], points [171] and image-level tags [97, 98, 172], there exists a considerable

number of datasets in the form of abdominal CT scans [7, 66, 173]. To meet different

research goals or practical usages, these datasets are annotated to target different

organs (a subset of abdominal organs), e.g., pancreas datasets [7] only have the

pancreas labeled while leaving the rest marked as background.

The aim of this work is to fully leverage these existing partially-annotated datasets

to assist multi-organ segmentation, which we refer to as partial supervision. To

address the challenge of partial supervision, an intuitive solution is to simply train a

segmentation model directly on both the labeled data and the partially-labeled data

in the semi-supervised manner [10, 97, 120]. However, it 1) fails to take advantages of
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the fact that medical images are naturally more constrained compared with natural

images [5]; 2) is intuitively misleading as it treats the unlabeled pixels/voxels as

background. To overcome these issues, we propose Prior-aware Neural Network (PaNN)

to handle such background ambiguity via incorporating prior knowledge on organ size

distributions. We achieve this via a prior-aware loss, which acts as an auxiliary and soft

constraint to regularize that the average output size distributions of different organs

should approximate their prior proportions. Based on the anatomical similarities

(Figure 7-1) across different patient scans [121, 122, 127], the prior proportions are

estimated by statistics from the fully-labeled data. The overall pipeline is illustrated

in Figure 7-2. It is important to note that the training objective is hard to be directly

optimized using stochastic gradient descent. To address this issue, we propose to

formulate our objective in a min-max form, which can be well optimized via the

stochastic primal-dual gradient algorithm [174]. To summarize, our contributions are

three-fold:

1) We propose Prior-aware Neural Network, which incorporates domain-specific

knowledge from medical images, to facilitate multi-organ segmentation via using

partially-annotated datasets.

2) As the training objective is difficult to be directly optimized using stochastic

gradient descent, it is essential to reformulate it in a min-max form and optimize via

stochastic primal-dual gradient [174].

3) PaNN significantly outperforms previous state-of-the-arts even using fewer annota-

tions. It achieves 84.97% on the MICCAI2015 challenge “Multi-Atlas Labeling Beyond

the Cranial Vault”, outperforming prior arts by a large margin.
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7.2 Prior-aware Neural Network

Our work aims to address the multi-organ segmentation problem with the help of

multiple existing partially-labeled datasets. Given a CT scan where each element

indicates the Housefield Unit (HU) of a voxel, the goal is to find the predicted labelmap

of each pixel/voxel.

7.2.1 Partial Supervision

We consider a new supervision paradigm, i.e., partial supervision, for multi-organ

segmentation. This is motivated by the fact that there exists a considerable number

of datasets with only one or a few organs labeled in the form of abdominal CT

scans [7, 66, 173] in medical image analysis, which can serve as partial supervision for

multi-organ segmentation (see the list in the appendix). Based on domain knowledge,

our approach assumes the following characteristics of the datasets which are common

in medical image analysis. First, the scanning protocols of medical images are well

standardized, e.g., brain, head and neck, chest, abdomen, and pelvis in CT scans,

which means that the internal structures are consistent in a limited range according to

the scanning protocol (see Figure 7-1). Second, internal organs have anatomical and

spatial relationships such as gastrointestinal track, i.e., stomach, duodenum, small

intestine, and colon are connected in a fixed order.

The partially-supervised setting can be formally defined as below. Given a fully-

labeled dataset SL = {IL, YL} with the annotation YL known and T partially-labeled

datasets SP = {SP1 , SP2 , ...SPT
} with the t-th dataset defined as SPt = {IPt , YPt}.

L = {1, 2, ..., nL} and Pt = {1, 2, ..., nPt} denote the image indices for SL and SPt ,

respectively. For each element yij ∈ YL, yij denotes the annotation of the j-th pixel in

the i-th image Ii ∈ IPt and is selected from L, where L denotes the abdominal organ

space, i.e., L = {spleen, pancreas, liver, ...}. For the t-th partially-labeled dataset SPt ,
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yij ∈ YPt is selected from LPt ⊆ L. In 2D-based segmentation models, the i-th input

Ii is a sliced 2D image from either Axial, Coronal or Saggital view of the whole CT

scan [8, 13, 18, 19, 128]. In 3D-based segmentation models, Ii is a cropped 3D patch

from the whole CT volume [78, 143]. Note that semi-supervision and fully-supervision

are two extreme cases of partial supervision, when the set of partial labels is an empty

set (LPt = ⊘) and is equal to the complete set (LPt = L), respectively.

A naive solution is to simply train a segmentation network from both the fully-

labeled data and the partially-labeled data and alternately update the network pa-

rameters and the segmentations (pseudo-labels) for the partially-labeled data [19][10].

While these EM-like approaches have achieved significant improvement compared with

fully-supervised methods, they require high-quality pseudo-labels and fail to explicitly

incorporate anatomical priors on shape or size.

To address this issue, we propose a Prior-aware Neural Network (PaNN), aiming at

explicitly embedding anatomical priors without incurring any additional budget. More

specifically, the anatomical priors are enforced by introducing an additional penalty

which acts as a soft constraint to regularize that the average output distributions

of organ sizes should mimic their empirical proportions. This prior is obtained by

calculating the organ size statistics of the fully-labeled dataset. An overview of the

overall framework is shown in Figure 7-2, and the detailed training procedures will be

introduced in the following sections.

7.2.2 Prior-aware Loss

Consider a segmentation network parameterized by Θ, which outputs probabilities

p. Let q ∈ R(|L|+1)×1 be the label distribution in the fully-labeled dataset, with ql

describing the proportion of the l-th label (organ). Then, we estimate the average
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predicted distribution of the pixels in the partially-labeled datasets as

p̄ = 1
N

T∑︂
t=1

∑︂
i∈Pt

∑︂
j

pij , (7.1)

where pij = [p0
ij, p1

ij, ..., p
|L|
ij ] denotes the probability vector of the j-th pixel in the i-th

input slice Ii, and N is the total number of pixels/voxels. Recall that T is the total

number of partially-labeled datasets.

To embed the prior knowledge, the prior-aware loss is defined as

KLmarginal(q|p̄) ≜
∑︁

l KL(ql|p̄l)

= −
∑︁

l

(︂
ql log p̄l + (1− ql) log(1− p̄l)

)︂
+ const

= −{q log p̄ + (1− q) log(1− p̄)}+ const,

(7.2)

which measures the matching probability of the two distributions q and p̄ via Kullback-

Leibler divergence. Note that each class is treated as one vs. rest when calculating

the matching probabilities. Therein, the rationale of Eqn. (7.2) is that the output

distributions p̄ of different organ sizes should approximate their empirical marginal

proportions q, which generally reflects the domain-specific knowledge.

Note that q is a global estimation of label distribution of the fully-labeled training

data, which remains unchanged. Consequently, H(q) is constant which can be omitted

during the network training. Nevertheless, we observe that it is still problematic to

directly apply stochastic gradient descent, as we will detail in Section 7.2.3.

Specifically in our case, our final training objective is

min
Θ,YP

JL(Θ) + λ1JP(Θ, YP) + λ2JC(Θ), (7.3)

where JL(Θ) and JP(Θ, YP) are the cross entropy loss on the fully-labeled data and

the partially-labeled data, respectively. And YP denotes the computed pseudo-labels

as well as existing partial labels from the partially-labeled dataset(s). Note that the

prior-aware loss JC is used as a soft global constraint to stablize the training process.

Concretely, JL(Θ) is defined as

JL = − 1
N

∑︂
i∈L

∑︂
j

|L|∑︂
l=0

1(yij = l) log pl
ij , (7.4)
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where pl
ij denotes the softmax probability of the j-th pixel in the i-th image to the

l-th category. JP(Θ, YP) is given by

JP = − 1
N

T∑︂
t=1

∑︂
i∈Pt

∑︂
j

|L|∑︂
l=0
{1(yij = l) log pl

ij

+1(y′
ij = l) log pl

ij},
(7.5)

where the first term corresponds to the pixels with their labels YP given, i.e., yij ∈ LPt .

The second term corresponds to unlabeled background pixels, and YP needs to be

estimated during the model training as a kind of pseudo-supervision, i.e., y′
ij ∈ L−LPt .

7.2.3 Derivation

By substituting Eqn. (7.1) into Eqn. (7.2) and expanding q, p̄ into scalars, we rewrite

Eqn. (7.2) as

JC = −
|L|∑︂
l=0
{ql log 1

N

T∑︂
t=1

∑︂
i∈Pt

∑︂
j

pl
ij+

(1− ql) log(1− 1
N

T∑︂
t=1

∑︂
i∈Pt

∑︂
j

pl
ij)}+ const.

(7.6)

From Eqn. (7.2) and Eqn. (7.6) we can see that the average distribution p̄ of organ

sizes is inside the logarithmic loss, which is very different from standard machine

learning loss such as Eqn. (7.4) and Eqn. (7.5) where the average is outside logarithmic

loss. And directly minimizing by stochastic gradient descent is very difficult as the

true gradient induced by Eqn. (7.2) is not a summation of independent terms, the

stochastic gradients would be intrinsically biased [174].

To remedy this, we propose to optimize the KL divergence term using stochastic

primal-dual gradient [174]. Our goal here is to transform the prior-aware loss into

an equivalent min-max problem by taking the sample average out of the logarithmic

loss. We introduce two auxiliary variables to assist the optimization, i.e., the primal

variable α and the dual variable β. First, the following identity holds

− log α = max
β

(αβ + 1 + log(−β)) (7.7)
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Algorithm 4 The training procedure of PaNN
Require: Fully-labeled training data SL;
Require: Partially-labeled training data SP;
Require: Hyperparameters: λ1, λ2;
Require: Maximum training iteration K;
Ensure: Segmentation model Θ;

Train the segmentation model Θ on SL;
Compute the prior distribution q on SL;
Initialize ν = −1/q and µ = 1/(1− q);
repeat

Estimate pesudo-labels YP with Θ;
Update ν and µ via stochastic gradient ascent;
Update Θ via stochastic gradient descent;

until Training iteration reaches K;
return Θ

due to the property of the log function. Based on Eqn. (7.7), we define ν ∈ R|L|×1 as

the dual variable associated to the primal variable p̄, and define µ ∈ R|L|×1 as the

dual variable associated to the primal variable (1− p̄). Then, we have

− log p̄l = max
νl

(︂
p̄lνl + 1 + log(−νl)

)︂
− log(1− p̄l) = max

µl

(︂
(1− p̄l)µl + 1 + log(−µl)

)︂
,

(7.8)

where νl (or µl) denotes the l-th element of ν (or µ). Substituting them into

Eqn. (7.2)/Eqn. (7.6), maximizing the KL divergence is equivalent to the following

min-max optimization problem:

min
Θ

max
ν,µ

∑︂
l

ql
(︂
p̄lνl + 1 + log(−νl)

)︂
+

∑︂
l

(1− ql)
(︂
(1− p̄l)µl + 1 + log(−µl)

)︂
⇔ min

Θ
max
ν,µ

∑︂
l

(︂
qlνl − (1− ql)µl

)︂
p̄l + ql log(−νl)

+
∑︂

l

(1− ql)
(︂
µl + log(−µl)

)︂
,

(7.9)

which brings the sample average out of the logarithmic loss. Note that we ignore the

constant in the above formulas.
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7.2.4 Model Training

We consider training a fully convolutional network [41, 42, 101] for multi-organ

segmentation, where the input images are either 2D slices [8, 13, 19, 128] or 3D

cropped patches [78, 143]. The training procedure can be divided into two stages.

In the first stage, we only train on the fully-labeled dataset SL by optimizing

Eqn. (7.4) via stochastic gradient descent (also means λ1 = 0 and λ2 = 0 in Eqn. (7.3)).

The goal of this stage is to find a proper initialization Θ0 for the network weights,

which stabilizes the later training procedure.

In the second stage, we train the model on the union of the fully-labeled dataset

SL and partially-labeled dataset(s) SP via Eqn. (7.3). As can be drawn, we have

two groups of variables, i.e., the network weights Θ and the three auxiliary variables

{ν, µ, YP}. We adopt an alternating optimization, which can be decomposed into

two subproblems:

• Fixing Θ, Updating {ν, µ, YP}. With the network weights Θ given, we can first

estimate the pesudo-labels YP of background pixels in the partially-labeled dataset(s)

SP. Meanwhile, the optimization of ν and µ is a maximization problem. Hence, we

do stochastic gradient ascent to learn ν and µ. As for the initialization, we set ν to

−1/q and set µ to −1/(1− q), respectively.

• Fixing {ν, µ, YP}, Updating Θ. By fixing the three auxiliary variables, we can

then update the network weights Θ via the standard stochastic gradient descent.

As can be seen, our algorithm is formulated as a min-max optimization. We

summarize the detailed procedure of optimization in Algorithm 4.
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7.3 Experiments

7.3.1 Experiment Setup

Datasets and Evaluation Metric. We use the training set released in the MICCAI

2015 Multi-Atlas Abdomen Labeling Challenge as the fully-labeled dataset SL, which

contains 30 abdominal CT scans with 3779 axial contrast-enhanced abdominal clinical

CT images in total. For each case, 13 anatomical structures are annotated, including

spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach, aorta, inferior

vena cava (IVC), portal vein & splenic vein, pancreas, left adrenal gland, right adrenal

gland. Each CT volume consists of 85 ∼ 198 slices of 512× 512 pixels, with a voxel

spatial resolution of ([0.54 ∼ 0.54]× [0.98 ∼ 0.98]× [2.5 ∼ 5.0])mm3.

As for the partially-labeled dataset(s) SP, we use a spleen segmentation dataset1

(referred as A), a pancreas segmentation dataset2 (referred as B) and a liver segmen-

tation dataset1 (referred as C). To make these partially-labeled datasets balanced, 40

cases are evenly selected from each dataset to constitute the partial supervision.

Following the standard cross-validation evaluation [8, 13, 66, 128, 175], we randomly

partition the fully-labeled dataset SL into 5 complementary folds, each of which

contains 6 cases, then apply the standard 5-fold cross-validation. For each fold, we

use 4 folds (i.e., 24 cases) as full supervision and test on the remaining fold.

The evaluation metric we use is the Dice-Sørensen Coefficient (DSC), which

measures the similarity between the prediction voxel set Z and the ground-truth set Y .

Its mathematical definition is DSC(Z,Y) = 2×|Z∩Y|
|Z|+|Y| . We report an average DSC of all

the testing cases over the 13 labeled anatomical structures for performance evaluation.

Implementation Details. Similar to [8, 13, 15, 19, 66], we use the soft tissue

CT window range of [−125, 275] HU. The intensities of each slice are then rescaled
1Available at http://medicaldecathlon.com
2Available at https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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to [0.0, 255.0]. Random rotation of [0, 15] is used as an online data augmentation.

Our implementations are based on the current state-of-the-art 2D3 [94, 95] and 3D

models4 [101, 176]. We provide an extensive study about how partially-labeled datasets

facilitate multi-organ segmentation task and list thorough comparisons under different

settings.

As described in Section 7.2.4, the whole training procedure is divided into two

stages. The first stage is the same as fully-supervised training, i.e., we train exclusively

on the fully-labeled dataset SL for a certain number of iterations M1.

In the second stage, we switch to the min-max optimization on the union of

the fully-labeled dataset and partially-labeled datasets for M2 iterations. In each

mini-batch, the sampling rate of labeled data and partially-labeled data is 3 : 1. It

has been suggested [10] that it is less necessary to update the pseudo-label YP per

iteration. Hence, YP is updated every 10K iterations in practice. In addition, the

hyperparameters λ1 and λ2 are set to be 1.0 and 0.1, respectively. The same decay

policy of learning rate is utilized as that used in the first stage. In the second stage,

the initial learning rate for the minimization step and the maximization step are set

as 10−5 and 2× 10−5, respectively.

For 2D implementations, the initial learning rate of the first stage is 2 × 10−5

and a poly learning rate policy is employed. M1 and M2 are set as 40K and 30K,

respectively. Following [6, 66, 95], we apply multi-scale inputs (scale factors are

{0.75, 1.0, 1.25, 1.5, 1.75, 2.0}) in both training and testing phase. For 3D implementa-

tions, the initial learning rate of the first stage is 5e−4 and a fixed learning rate policy

is employed. M1 and M2 are set as 80K and 100K, respectively.
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Model Supervision
Partially-labeled

Average Dicedataset
A B C

ResNet50 [37]

Full 0.7535

Semi [10]

✓ 0.7593
✓ 0.7632

✓ 0.7596
✓ ✓ ✓ 0.7669

Partial (ours)

✓ 0.7650
✓ 0.7662

✓ 0.7631
✓ ✓ ✓ 0.7705

PaNN (ours)

✓ 0.7716
✓ 0.7712

✓ 0.7705
✓ ✓ ✓ 0.7833

ResNet101 [37]

Full 0.7614

Semi [10]

✓ 0.7637
✓ 0.7649

✓ 0.7647
✓ ✓ ✓ 0.7719

Partial (ours)

✓ 0.7714
✓ 0.7695

✓ 0.7684
✓ ✓ ✓ 0.7735

PaNN (ours)

✓ 0.7770
✓ 0.7819

✓ 0.7748
✓ ✓ ✓ 0.7904

3D-UNet [143]

3D-UNet-fully-sup 0.7066
Semi [10] ✓ ✓ ✓ 0.7193
Partial (ours) ✓ ✓ ✓ 0.7163
PaNN (ours) ✓ ✓ ✓ 0.7208

Table 7-I. Performance comparison (DSC) with fully-supervised and semi-supervised
methods. Bold underline denotes the best results, bold denotes the second best results.

7.3.2 Experimental Comparison

We compare the proposed PaNN with a series of state-of-the-art algorithms, including 1)

the fully-supervised approach (denoted as “-fully-sup”), where we train exclusively only

on the fully-labeled dataset SL, 2) the semi-supervised approach (denoted as “-semi-

sup”), where we train the network on both the fully-labeled dataset SL and the partially-

labeled dataset(s) SP while treating SP as unlabeled following the representative

method [10], and 3) the naive partially-supervised approach (denoted as “-partial-
3https://github.com/tensorflow/models/tree/master/research/deeplab
4https://github.com/DLTK/DLTK
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sup”), where we also train the network on both SL and SP while treating the partial

labels as they are. Different from PaNN, we set λ2 = 0 in Eqn. (7.3) to verify the

efficacy of the prior-aware loss.

Benefit of Partial Supervision. As shown from Table 7-I, among three kinds of

supervisions, partial supervision obtains the best performance followed by the semi-

supervision and full supervision. It is no surprise to observe such a phenomenon for

two reasons. First, compared with full supervision, semi-supervision has more training

data, though part of them is not annotated. Second, compared with semi-supervision,

partial supervision involves more annotated pixels in the organ of interest.

Effect of PaNN. From Table 7-I, PaNN generally achieves better performance than

the naive partially-supervised methods, which demonstrates the effectiveness of our

proposed PaNN. For example, when setting the partial dataset as the union of A,

B and C, PaNN achieves the best result either using 2D models or 3D models. 2D

models generally observe a better performance in each setting compared with 3D

models. This is probably due to the fact that current 3D models only act on local

patches (e.g., 64 × 64 × 64), which results in lacking holistic information [18]. A

detailed discussion of 2D and 3D models is listed in [80]. More specifically, PaNN

outperforms the naive partially-supervised method by 1.28% with ResNet-50 and by

1.69% with ResNet-101 as the backbone model, respectively. Additionally, we also

observe a convincing performance gain of 0.45% using 3D UNet [101, 143] as the

backbone model.

Meanwhile, by increasing the number of partially-labeled datasets (from using only

A, B or C to the union of three), the performance improvements of different methods

are also different. For example, with the ResNet-101 as the backbone, the largest

improvement obtained under semi-supervision is 0.82% (from 76.37% to 77.19%), and

that of partial supervision is 0.51% (from 76.84% to 77.35%). By contrast, PaNN

108



Spleen Kidney(R) Kidney(L) Gallbladder Esophagus Live Stomach Aorta IVC P&S Vein Pancreas AG(R) AG(L)

D
SC

1.0

0.8

0.6

0.4

0.2

0.9

0.7

0.5

0.3

0.1

Fully-supervised
Semi-supervised
Proposed PaNN

Figure 7-3. Performance comparison (DSC) in box plots of 13 abdominal structures,
where the partially-labeled dataset C is used with ResNet-50 as the backbone model.
Our proposed PaNN improves the overall mean DSC and also reduces the standard
deviation. Kidney/AG (R), Kidney/AG (L) stand for the right and left kidney/adrenal
gland, respectively.

Name Spleen Kidney(R) Kidney(L) Gallbladder Esophagus Aorta IVC Average Mean Surface Hausdorff
Dice Distance Distance

AutoContext3DFCN [66] 0.926 0.866 0.897 0.629 0.727 0.852 0.791 0.782 1.936 26.095
deedsJointCL [177] 0.920 0.894 0.915 0.604 0.692 0.857 0.828 0.790 2.262 25.504
dltk0.1_unet_sub2 [176] 0.939 0.895 0.915 0.711 0.743 0.891 0.826 0.815 1.861 62.872
results_13organs_p0.7 0.890 0.898 0.883 0.685 0.754 0.870 0.819 0.817 4.559 38.661
PaNN* (ours) 0.961 0.901 0.943 0.704 0.783 0.913 0.835 0.832 1.641 25.176
PaNN (ours) 0.968 0.920 0.953 0.729 0.790 0.925 0.847 0.850 1.450 18.468

Table 7-II. Performance comparison on the 2015 MICCAI Multi-Atlas Abdomen Labeling
challenge leaderboard. Our method achieves the largest Dice score and the smallest average
surface distances and Hausdorff distances. PaNN* only uses 80% of the training data
as the fully-supervised dataset and use the rest 20% data as partially-labeled data (by
randomly removing labels of 7/13 organs), without using extra data. In this table, we only
show 7/13 organs’ average Dice scores due to the space limit.

obtains a much more remarkable improvement of 1.56% (from 77.48% to 79.04%).

Such an observation suggests that PaNN is capable of handling more partially-labeled

training data and is less susceptible to the background ambiguity.

Organ-by-organ Analysis. To reveal the detailed effect of PaNN, we present an

organ-by-organ analysis in Figure 7-3. We use ResNet-50 as the backbone model

(ResNet-101 has a similar trend) and the partially-labeled dataset C (indicates that

the liver is the target organ).

In Figure 7-3, we observe clear statistical improvements over the fully-supervised

method for almost every organ (p-values p < 0.001 hold for 11/13 of all abdominal
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organs). Great improvements are also observed for those difficult organs, i.e., organs

either in small sizes or with complex geometric characteristics such as gallbladder

(from 67.26% to 72.26%), esophagus (from 69.35% to 71.21%), stomach (from 84.09%

to 87.21%), IVC (from 77.34% to 80.70%), portal vein & splenic vein (from 66.74%

to 68.75%), pancreas (from 71.45% to 73.62%), right adrenal gland (from 53.65%

to 55.56%) and left adrenal gland (from 49.51% to 53.63%). This promising result

indicates that our method distills a reasonable amount of knowledge from additional

partially-labeled data and the regularization loss can help facilitate the network to

enhance the discriminative information to a certain degree.

Meanwhile, we also observe a distinct performance improvement for organs other

than the partially-labeled structures (i.e., the liver). For instance, the performance of

gallbladder, stomach, IVC, pancreas are boosted from 68.97%, 85.57%, 78.59%, 71.94%

to 72.26%, 87.21%, 80.70%, 73.62%, respectively. This suggests that the superiority of

PaNN not only originates from more training data, but also from the fact that PaNN

can effectively incorporate anatomical priors on organ sizes in abdominal regions,

which is helpful for multi-organ segmentation.

Qualitative Evaluation. We also show a set of qualitative examples, i.e., 5 slices

from 3 cases, in Figure 7-4, where we zoom in to visualize the finer details of the

improved region.

In these samples, we observe that PaNN is the only method that successfully

detects the pancreatic tail in Figure 7-4(a). In Figure 7-4(b), all other methods fail to

detect the portal vein and splenic vein while PaNN demonstrates an almost perfect

detection of these veins. For Figure 7-4(c) to Figure 7-4(e), apart from the evident

improvements of the pancreas, left adrenal gland, one of the smallest abdominal organs,

is also clearly segmented by PaNN.
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Figure 7-4. Qualitative comparison of different methods, where the partially-labeled
dataset C is used as partial supervision with ResNet-101 as the backbone model. We
exhibit 3 cases (5 slices) as examples. Improved segmentation regions are zoomed in from
the axial view to demonstrate finer details.

7.3.3 MICCAI 2015 Multi-Atlas Labeling Challenge

We test our model in the 2015 MICCAI Multi-Atlas Abdomen Labeling challenge. The

top model (denoted as “PaNN” in Table 7-II) we submit is based on ResNet-101, and

trained on all 30 cases of the fully-labeled dataset SL and the union of three partially-

labeled datasets A, B and C. The evaluation metric employed in this challenge

includes the Dice scores, average surface distances [8] and Hausdorff distances [78].

We compare PaNN with the other top submissions of the challenge leaderboard in

Table 7-II. As it shows, the proposed PaNN achieves the best performance under all

the three evaluation metrics, easily surpassing prior best result by a large margin.
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Without using any additional data and even randomly removing partial

labels from the challenge data, our method (denoted as “PaNN*” in Table 7-II) stills

obtains the state-of-the-art result of 83.17%, outperforming the previous best result

of DLTK UNet [176] by 2% in average Dice. It is noteworthy that our method is far

from its potential maximum performance as we only use 2D single view algorithms. It

is suggested [13, 16, 18, 19] that using multi-view algorithms or model ensemble can

boost the performance further.

7.3.4 Generalization to Other Datasets

Organ
Fully Semi Partially PaNN

Supervised Supervised Supervised (ours) (ours)

Spleen 0.9640 0.9651 0.9673 0.9666
Right kidney 0.9626 0.9627 0.9625 0.9615
Left kidney 0.9530 0.9547 0.9526 0.9541
Gallbladder 0.8225 0.8399 0.8465 0.8467
Liver 0.9684 0.9691 0.9691 0.9689
Stomach 0.9344 0.9363 0.9396 0.9361
Aorta 0.9110 0.9096 0.9121 0.9133
IVC 0.8083 0.8175 0.7995 0.8266
Pancreas 0.7831 0.7994 0.8079 0.8193

avg. Dice 0.9008 0.9060 0.9063 0.9103

Table 7-III. Performance comparison on a newly collected high-quality abdominal dataset,
where our method achieves the best result.

We also apply our algorithm to a different set of abdominal clinical CT images,

where 20 cases are used for training and 15 cases are used for testing. A total of

9 structures (spleen, right kidney, left kidney, gallbladder, liver, stomach, aorta,

IVC, pancreas) are manually labeled. Each case was segmented by four experienced

radiologists, and confirmed by an independent senior expert. Each CT volume

consists of 319 ∼ 1051 slices of 512× 512 pixels, and has voxel spatial resolution of

([0.523 ∼ 0.977]× [0.523 ∼ 0.977]× 0.5)mm3. We use the union of all 3 datasets A,

B, and C as the partial supervision. The results are summarized in Table 7-III, where

the proposed PaNN also achieves better results compared with existing methods.
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7.4 Summary

In this work, we have presented PaNN, for multi-organ segmentation, as a way to

better utilize existing partially-labeled datasets. In this method, we intend to make

the learned model both data-efficient and knowledge-aware by incorporating prior

knowledge in the self-training framework on multiple heterogeneous datasets. To

handle the background ambiguity brought by the partially-labeled data, the proposed

PaNN exploits the anatomical priors by regularizing that the organ size distributions

of the network output should approximate their prior statistics in the abdominal

region.

Also, we want to address that knowledge can arise from various sources such

as imaging physics, statistical constraints, and task specifics [1]. And this makes

the knowledge priors take in various forms, such as shape models; spatial priors;

topology specification; geometrical interaction and distance prior between different

regions/labels; and atlas or pre-known models [5]. We use the size prior here, which is

one of the simplest form to embed in the learning. But we definitely encourage more

types of prior information to be studied for various learning tasks in the future.

Our proposed PaNN shows promising results using state-of-the-art models. And

we believe that the use of priors can also stabilize training and make the learned

presentations more generalized. We hope that our effort can offer some insights along

this direction.
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Chapter 8

Hyper-Pairing Network for
Multi-Phase Pancreatic Ductal
Adenocarcinoma Segmentation

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with

an overall five-year survival rate of 8%. Due to subtle texture changes of PDAC,

pancreatic dual-phase imaging is recommended for better diagnosis of pancreatic

disease. In this study, we aim at enhancing PDAC automatic segmentation by

integrating multi-phase information (i.e., arterial phase and venous phase). To this

end, we present Hyper-Pairing Network (HPN), a 3D fully convolution neural network

which effectively integrates information from different phases. The proposed approach

consists of a dual path network where the two parallel streams are interconnected

with hyper-connections for intensive information exchange. Additionally, a pairing

loss is added to encourage the commonality between high-level feature representations

of different phases. Compared to prior arts which use single phase data, HPN reports

a significant improvement up to 7.73% (from 56.21% to 63.94%) in terms of DSC.

8.1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the 4th most common cancer of death

with an overall five-year survival rate of 8%. Currently, detection or segmentation
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(a) Arterial Image (b) Arterial Label (c) Venous Image (d) Venous Label

Figure 8-1. Visual comparison of arterial and venous images (after alignment) as well as
the manual segmentation of normal pancreas tissues (yellow), pancreatic duct (purple) and
PDAC mass (green). Orange arrows indicate the ambiguous boundaries and differences of
the abnormal appearances between the two phases (Best viewed in color).

at localized disease stage followed by complete resection can offer the best chance of

survival, i.e., with a 5-year survival rate of 32%. The accurate segmentation of PDAC

mass is also important for further quantitative analysis, e.g., survival prediction [178].

Computed tomography (CT) is the most commonly used imaging modality for the

initial evaluation of PDAC. However, textures of PDAC on CT are very subtle

(Figure 8-1) and therefore can be easily neglected by even experienced radiologists.

To our best knowledge, the state-of-the-art on this matter is [179], which reports an

average Dice of 56.46%. For better detection of PDAC mass, dual-phase pancreas

protocol using contrast-enhanced CT imaging, which is comprised of arterial and

venous phases with intravenous contrast delay, are recommended.

In recent years, deep learning has largely advanced the field of computer-aided

diagnosis (CAD), especially in the field of biomedical image segmentation [8, 13,

18, 48, 101, 180–182]. However, there are several challenges for applying existing

segmentation algorithms to dual-phase images. First, segmentation of pancreatic

lesion, e.g., cysts [16], is more difficult than organ segmentation due to its smaller sizes,

lower contrast and texture similarity, etc. Secondly, these algorithms are optimized for

segmenting only one type of input, and therefore cannot be directly applied to handle

multi-phase data. More importantly, how to properly handle the variations between
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different views requires a smart information exchange strategy between different phases.

While how to efficiently integrate information from multi-modalities has been widely

studied [183–185], the direction on learning multi-phase information has been rarely

explored, especially for tumor detection and segmentation purposes.

To address these challenges, we propose a multi-phase segmentation algorithm,

Hyper-Pairing Network (HPN), to enhance the segmentation performance especially

for pancreatic abnormality. Following HyperDenseNet [183] which is effective on

multi-modal image segmentation, we construct a dual-path network for handling

multi-phase data, where each path is intended for one phase. To enable information

exchange between different phases, we apply skip connections across different paths of

the network [183], referred as hyper-connections. Moreover, noticing that a standard

segmentation loss (cross-entropy loss, Dice loss [78]) only aims at minimizing the

differences between the final prediction and the groundtruth thus cannot well handle

the variance between different views, we introduce an additional pairing loss term to

encourage the commonality between high-level features across both phases for better

incorporation of multi-phase information. We exploit three structures together in

HPN including PDAC mass, normal panreatic tissues, and pancreatic duct, which

serves as an important clue for localizing PDAC. Extensive experiments demonstrate

that the proposed HPN significantly outperforms prior arts by a large margin on all 3

targets.

8.2 Methodology

We hereby focus on dual-phase inputs while our approach can be generalized to

multi-phase scans. With phase A and aligned phase B by the deformable registration,

we have the set S = {
(︂
XA

i , XB
i , Yi

)︂
|i = 1, ..., M}, where XA

i ∈ RWi×Hi×Li is the i-th

3D volumetric CT images of phase A with the dimension (Wi ×Hi × Li) = Di and

XB
i ∈ RDi is the corresponding aligned volume of phase B. Yi = {yij|j = 1, ...,Di}
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Encoder Decoder

(b) Dual Path

Encoder Decoder

Lcorr

pancreas

PDAC mass

duct

(a) Single Path

Figure 8-2. (a) The single path network where only one phase is used. The dash arrows
denote skip connections between low-level features and high-level features. (b) HPN
structure where multiple phases are used. The black arrows between the two single path
networks indicate hyper-connections between the two streams. An additional pairing loss
is employed to regularize view variations, therefore can benefit the integration between
different phases. Blue and pink stand for arterial and venous phase, respectively.

denotes the corresponding voxel-wise label map of the i-th volume, where yij ∈ L is

the label of the j-th voxel in the i-th image, and L denotes the label of the target

structures. In this study, L = {normal panreatic tissues, PDAC mass, pancreatic

duct}. The goal is to learn a model to predict label of each voxel Ŷ = f(XA, XB) by

utilizing multi-phase information.

8.2.1 Hyper-connections

Segmentation networks (e.g., UNet [101, 143], FCN [41]) usually contain a contracting

encoder part and a successive expanding decoder part to produce a full-resolution

117



segmentation result as illustrated in Figure 8-2(a). As the layer goes deeper, the

output features evolve from low-level detailed representations to high-level abstract

semantic representations. The encoder part and the decoder part share an equal

number of resolution steps [101, 143].

However, this type of network can only handle single-phase data. We construct a

dual path network where each phase has a branch with a U-shape encoder-decoder archi-

tecture as mentioned above. These two branches are connected via hyper-connections

which enrich feature representations by learning more complex combinations between

the two phases. Specifically, hyper-connections are applied between layers which

output feature maps of the same resolution across different paths as illustrated in

Figure 8-2(b). Let R1, R2, ..., RT denote the intermediate feature maps of a general

segmentation network, where Rt and RT−t share the same resolution (Rt is on the

encoder path and RT−t is on the decoder path). Hyper-connections are applied as

follows: RA
t −→ RB

t , RB
t −→ RA

t , RA
t −→ RB

T−t, RB
t −→ RA

T−t,RA
T−t −→ RB

T−t,

RB
T−t −→ RA

T−t, while maintaining the original skip connections that already occur

within the same path, i.e., RA
t −→ RA

T−t, RB
t −→ RB

T−t.

8.2.2 Pairing loss

The standard loss for segmentation networks only aims at minimizing the difference

between the ground-truth and the final estimation, which cannot well handle the

variance between different views. Applying this loss alone is inferior in our situation

since the training process involves heavy integration of both arterial information

and venous information. To this end, we propose to apply an additional pairing

loss, which encourages the commonality between the two sets of high-level semantic

representations, to reduce view divergence.

We instantiate this additional objective as a correlation loss [186]. Mathematically,

for any pair of aligned images (XA
i , XB

i ) passing through the corresponding view sub-
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network, the two sets of high-level semantic representations (feature responses in later

layers) corresponding to the two phases are denoted as f1(XA
i ; Θ1) and f2(XB

i ; Θ2),

where the two sub-networks are parameterized by Θ1 and Θ2 respectively. The outputs

of two branches will be simultaneously fed to the final classification layer. In order to

better integrate the outcomes from the two branches, we propose to use a pairing loss

which exploits the consensus of f1(XA
i ; Θ1) and f2(XB

i ; Θ2) during training. The loss

is formulated as following:

Lcorr(XA
i , XB

i ; Θ) = −
∑︁N

j=1

(︂
f1(XA

ij)−f1(XA
i )

)︂(︂
f2(XB

ij)−f2(XB
i )

)︂
√︃∑︁N

j=1

(︂
f1(XA

ij)−f1(XA
i )

)︂2 ∑︁N

j=1

(︂
f2(XB

ij)−f2(XB
i )

)︂2
, (8.1)

where N denotes the total number of voxels in the i-th sample and Θ denotes the

parameters of the entire network. During the training stage, we impose this additional

loss to further encourage the commonality between the two intermediate outputs. The

overall loss is the weighted sum of this additional penalty term and the standard

voxel-wise cross-entropy loss:

Ltotal = − 1
N

[︄
N∑︁

j=1

K∑︁
k=0

1(yij = k) log pk
ij

]︄
+ λLcorr(XA

i , XB
i ; Θ), (8.2)

where pk
ij denotes the probability of the j-th voxel be classified as label k on the i-th

sample and 1(·) is the indicator function. K is the total number of classes. The overall

objective function is optimized via stochastic gradient descent.

8.3 Experiments

8.3.1 Experiment setup

Data acquisition. This is an institutional review board approved HIPAA compliant

retrospective case control study. 239 patients with pathologically proven PDAC were

retrospectively identified from the radiology and pathology databases from 2012 to

2017 and the cases with ≤ 4cm tumor (PDAC mass) diameter were selected for the
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experiment. PDAC patients were scanned on a 64-slice multidetector CT scanner

(Sensation 64, Siemens Healthineers) or a dual-source multidetector CT scanner

(FLASH, Siemens Healthineers). PDAC patients were injected with 100-120 mL of

iohexol (Omnipaque, GE Healthcare) at an injection rate of 4-5 mL/Section Scan

protocols were customized for each patient to minimize dose. Arterial phase imaging

was performed with bolus triggering, usually 30 seconds post-injection, and venous

phase imaging was performed 60 seconds.

Evaluation.Denote Y and Z as the set of foreground voxels in the ground-truth and

prediction, i.e., Y = {i | yi = 1} and Z = {i | zi = 1}. The accuracy of segmentation is

evaluated by the Dice-Sørensen coefficient (DSC): DSC(Y ,Z) = 2×|Y∩Z|
|Y|+|Z| . We evaluate

DSCs of all three targets, i.e., abnormal pancreas, PDAC mass and pancreatic duct.

All experiments are conducted by three-fold cross-validation, i.e., training the models

on two folds and testing them on the remaining one. Through our experiment,

abnormal pancreas stands for the union of normal pancreatic tissues, PDAC mass and

pancreatic duct. The average DSC of all cases as well as the standard deviations are

reported.

Implementation details Our experiments were performed on the whole CT scan

and the implementations are based on PyTorch. We adopt a variation of diffeomorphic

demons with direction-dependent regularizations [187, 188] for accurate and efficient

deformable registration between the two phases. For data pre-processing, we truncated

the raw intensity values within the range [-100, 240] HU and normalized each raw

CT case to have zero mean and unit variance. The input sizes of all networks are

set as 64×64×64. The coefficient of the correlation loss λ is set as 0.5. No further

post-processing strategies were applied.

We also used data augmentation during training. Different from single-phase

segmentation which commonly uses rotation and scaling [6, 179], virtual sets [189]
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Method Abnormal pancreas PDAC mass pancreatic duct
3D-UNet-single-phase (Arterial) 78.35 ± 11.89 52.40 ± 27.53 38.35 ± 28.98
3D-UNet-single-phase (Venous) 79.61 ± 10.47 53.08 ± 27.06 40.25 ± 27.89
3D-UNet-multi-phase (fusion) 80.05 ± 10.56 52.88 ± 26.97 39.06 ± 27.33
3D-UNet-multi-phase-HyperNet 82.45 ± 9.98 54.36 ± 26.34 43.27 ± 26.33
3D-UNet-multi-phase-HyperNet-aug 83.67 ± 8.92 55.72 ± 26.01 43.53 ± 25.94
3D-UNet-multi-phase-HPN (Ours) 84.32 ± 8.59 57.10 ± 24.76 44.93 ± 24.88
3D-ResDSN-single-phase (Arterial) 83.85 ± 9.43 56.21 ± 26.33 47.04 ± 26.42
3D-ResDSN-single-phase (Venous) 84.92 ± 7.70 56.86 ± 26.67 49.81 ± 26.23
3D-ResDSN-multi-phase (fusion) 85.52 ± 7.84 57.59 ± 26.63 48.49 ± 26.37
3D-ResDSN-multi-phase-HyperNet 85.79 ± 8.86 60.87 ± 24.95 54.18 ± 24.74
3D-ResDSN-multi-phase-HyperNet-aug 85.87 ± 7.91 61.69 ± 23.24 54.07 ± 24.06
3D-ResDSN-multi-HPN (Ours) 86.65 ± 7.46 63.94 ± 22.74 56.77 ± 23.33

Table 8-I. DSC (%) comparison of abnormal pancreas, PDAC mass and pancreatic duct.
We report results in the format of mean ± standard deviation.

are also utilized in this work. Even though arterial and venous phase scanning are

customized for each patient, the level of enhancement can be different from patients

by variation of blood circulation, which causes inter-subject enhancement variations

on each phase. Therefore we construct virtual examples by interpolating between

venous and arterial data, similar to [189]. The i-th augmented training sample

pair can be written as: X̃A
i = λXA

i + (1 − λ)XB
i , X̃B

i = λXB
i + (1 − λ)XA

i , where

λ ∼ Beta(α, α) ∈ [0, 1]. The final outcome of HPN is obtained by taking the union of

predicted regions from models trained with the original paired sets and the virtual

paired sets. We set the hyper-parameter α = 0.4 following [189].

8.3.2 Results and Discussions

All results are summarized in Table 8-I. We compare the proposed HPN with the

following algorithms: 1) single-phase algorithms which are trained exclusively on one

phase (denoted as “single-phase”); 2) multi-phase algorithm where both arterial and

venous data are trained using a dual path network bridged with hyper connections

(denoted as “HyperNet”). In general, compared with single-phase algorithms, multi-

phase algorithms (i.e., HyperNet, HPN) observe significant improvements for all target

structures. It is no surprise to observe such a phenomenon as more useful information
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Figure 8-3. Qualitative comparison of different methods, where HPN enhances PDAC
mass segmentation (green) significantly compared with other methods (Best viewed in
color).

is distilled for multi-phase algorithms.

Efficacy of hyper-connections. To show the effectiveness of hyper-connections,

output from different phases (using single-phase algorithms) are fused by taking at

each position the average probability (denoted as “fusion”). However, we observe that

simply fusing the outcomes from different phases usually yield either similar or slightly

better performances compared with single-phase algorithms. This indicates that

simply fusing the estimations during the inference stage cannot effectively integrate

multi-phase information. By contrast, hyper-connections enable the training process

to be communicative between the two phase branches and thus can efficiently elevate

the performance. Note that directly applying [183] yield unsatisfactory results. Our

hyper-connections are not densely connected but are carefully designed based on

previous state-of-the-art on PDAC segmentation [179] for better segmentation of

PDAC. Meanwhile, we show much better performance of 63.94% compared to 56.46%

reported in [179].

Efficacy of data augmentation. From Table 8-I, compared with HyperNet,
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Figure 8-4. Qualitative example where HPN detects the PDAC mass (green) while
single-phase methods for both phases fail. From left to right: venous and arterial images
(aligned), groundtruth, predictions of single-phase algorithms, HyperNet prediction, HPN
prediction (overlayed with venous and arterial images). Best viewed in color.

HyperNet-aug witnesses performance gain especially for PDAC mass (i.e., from

60.87% to 61.69% for 3D-ResDSN; from 54.36% to 55.72% for 3D-UNet), which

validates the usefulness of using virtual paired sets as data augmentation.

Efficacy of HPN. We can observe additional benefit of our HPN over hyperNet-

aug (e.g., abnormal pancreas: 85.87% to 86.65%, PDAC mass: 61.69% to 63.94%,

pancreatic duct: 54.07% to 56.77%, 3D-ResDSN). Overall, HPN observes an evident

improvement compared with HyperNet, i.e., abnormal pancreas: 85.79% to 86.65%,

PDAC mass: 61.69% to 63.94%, pancreatic duct: 54.07% to 56.77% (3D-ResDSN).

The p-values for testing significant difference between hyperNet and our HPN of all 3

targets are p < 0.0001, which suggests a general statistical improvement. We also show

two qualitative examples in Figure 8-3, where HPN shows much better segmentation

accuracy especially for PDAC mass.

Another noteworthy fact is that 11/239 cases are false negatives which failed to

detect any PDAC mass using either phase (Dice = 0%). Out of these 11 cases, 7

cases are successfully detected by HPN. An example is shown in Figure 8-4 — the
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PDAC mass is missing from both single phases and almost missing in the original

HyperNet (DSC=0.27%), but our HPN can detect a reasonable portion of the PDAC

mass (DSC=61.5%).

The deformable registration error by computing pancreas surface distances between

two phases is 1.01± 0.52mm (mean ± standard deviations) which can be considered

as acceptable for this study. However, the effects between different alignments can be

described as a further study.

8.4 Summary

Motivated by the fact that radiologists usually rely on analyzing multi-phase data

for better image interpretations, we develop an end-to-end framework, HPN, for

multi-phase image segmentation. Specifically, HPN consists of a dual path network

where different paths are connected for multi-phase information exchange, and an

additional loss is added for removing view divergence. Extensive experiment results

demonstrate that the proposed HPN can substantially and significantly improve the

segmentation performance, i.e., HPN reports an improvement up to 7.73% in terms of

DSC compared to prior arts which use single phase data. In the future, we plan to

examine the behaviour of HPN when using different alignment strategies and try to

extend the current approach to other multi-phase learning problems.
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Chapter 9

Conclusion and Discussion

9.1 Summary

In this thesis, we focus on designing data-efficient and knowledge-aware deep learning

techniques towards medical machine intelligence. Our studies [190–192] summarize

further clinical evaluations of various proposed approaches. In particular, we consider

several existing challenges in the field of medical image analysis, i.e., unsatisfactory

performance regarding challenging small targets, insufficient training data, high

annotation cost, and the lack of domain-specific knowledge. To effectively handle

small target (e.g., the pancreas) segmentation, in Chapter 3, we introduce multi-stage

coarse-to-fine frameworks where the coarse stage generates attention-related regions

which can later facilitate the fine stage to output more accurate results. Then in

Chapter 4 and Chapter 5, we show that this type of attention mechanism can be also

well adapted to cystic lesion segmentation and multi-organ segmentation, respectively.

This further shows the generalization of the proposed coarse-to-fine frameworks beyond

small target segmentation. In Chapter 6, we present a data-efficient deep learning

method by leveraging the power of unlabeled data. The method belongs to the

semi-supervised regime, which co-trains the deep model to mine consensus information

from multiple viewing directions.

In addition to data-efficiency, we also rethink existing deep-learning-based strategies

125



in terms of knowledge-awareness. When clinical experts interpret medical images,

they often rely on prior knowledge about anatomy, and may use a template of the

structures to constrain the task. By contrast, convolutional methods are often limited

in incorporating such domain-specific knowledge. Therefore, we further discuss how to

make deep neural networks aware of knowledge priors in Chapter 7, so as to approach

the real clinical expertise. Similarly, we design a multi-phase learning algorithm for

detecting pancreatic ductal adenocarcinoma in Chapter 8, since dual-phase imaging

is clinically recommended for better diagnosis of pancreatic disease. In addition, we

note that deep supervision for pancreatic cyst segmentation (Chapter 4) can be also

deemed as making use of the spatial prior of medical images, since it is based on the

high relevance between the location of a pancreas and its cystic region.

9.2 Future Works

The recent success in machine learning (especially deep learning) has led to remarkable

achievements in the field of medical image analysis. However, the gap between

research settings and real-world clinical settings remains large. We hope our proposed

data-efficient and knowledge-aware techniques offer some insights for enhancing the

applicability of existing medical image analysis systems. In the future, we aim to

investigate the following research directions to further bridge this gap.

Learning from heterogeneous and isolated data. Due to different scanners,

image acquisition protocols or different patient populations and ethnicities, medical

datasets are usually scattered and disjoint. To maximize data utilization and make

the learned representations more robust and universal, the following strategies can be

sought to handle heterogeneous data: 1) domain adaptation techniques, such as our

recent study [193], which attempt to bridge the gap between multiple domains (e.g.,

heterogeneous datasets) by either learning a latent representation that is shared by
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these different domains or by translating images from one domain to the other. 2)

dataset fusion techniques, which leverage multiple datasets to train a universal model.

These strategies can be furthered by:

• Multi-task learning. Different levels of annotations can be formulated tailored

to different learning tasks. Then Multi-task learning, which refers to the paradigm

where multiple tasks are derived from a single learned representation, can

encourage the encoder network to learn a latent representation that is generic

across different tasks and datasets.

• Self-supervised learning. In terms of unlabeled data, we can also formulate

other proxy tasks (e.g., jigsaw puzzles, image reconstruction) where the data

provides the supervision. This enables the unlabeled data to be either used

for pre-training or jointly learned to enhance the model scalability and the

generalization.

Multi-task learning and self-supervised learning can be also combined with our previous

studies [19, 20] to deliver more effective models. Many efforts have been devoted to

related research areas [121, 194–218].

Learning with noisy labels. Despite the recent advance of medical image analysis,

existing works mostly assume that reliable ground-truth annotations are abundant,

which is not always the case in practice: 1) collecting annotations can be time-

consuming; 2) human-annotations are inherently noisy. Further, annotations generally

suffer from inter/intra-observer variation even among experts. Therefore, it becomes

important to acquire a more generalized model which can be robust against noisy

annotations. To achieve this, our domain adaptation, self-supervised learning, semi-

supervised learning, weakly/partially supervised learning strategies [19, 20, 193] can

be applied. In addition, we also aim to alleviate the negative effects induced by the
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heavily noisy samples by employing our proposed weighted sampling strategy [128]

based on the upper confident bound, an exploitation-exploration strategy.

Leveraging priors of medical images. As aforementioned, our proposed strategies

in Chapter 4, Chapter 7 and Chapter 8 are different ways to make use of domain-

specific knowledge. Besides using the prior information on spatial location (Chapter 4)

and size (Chapter 7), we have also demonstrated that the cylinder-like shape of tubular

structures (e.g., vessels) can be well represented by its skeleton and cross-sectional radii,

and such shape (geometry) priors can be used to effectively refine the segmentation

outcome [219]. Similar conclusions are also drawn in [220, 221]. Given different types

of prior information, one promising direction is combining them to jointly guide the

model training via curriculum learning. The learned priors are intended to make

trained models more generalizable and aligned with clinician’s perceptions.

Efficient Neural Networks for Medical Image Analysis. Medical images (e.g.,

CT) are often high-dimensional 3D volumes. However, conventional 3D convolution

layers typically result in expensive computation and suffer from convergence problems

due to over-fitting issues and lack of pre-trained weights. [222–226] discuss the

advantages and disadvantages of 2D/3D architectures. In [57], we propose to use a

hybrid 2D-3D architecture which can largely reduce the compute budget while enjoying

the benefit of 3D context. Our later efforts on neural architecture search [227, 228]

further show that light-weight networks can be obtained for various imaging tasks.

How to further reduce the computation cost and make the searched architecture more

practical for clinical usage should be explored.

Multi-modal medical machine learning. Many medical image analysis prob-

lems heavily rely on information integration of different imaging modalities. Multi-

modalities, generally speaking, can refer to any different types of input. In the area
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Figure 9-1. Medical image analysis systems are vulnerable to adversarial examples, and
adversarial training can improve model robustness.

of computer vision and natural language processing, multi-modality fusion can be

applied to different types of data (e.g., image, motion, aural, speech) since they are

usually relevant and complementary to each other. In the medical domain, we have

demonstrated the importance of information integration from different phases (arterial

and venous phase), from the shape and texture features [21, 229, 230] for abnormality

detection. How to discover and utilize the intrinsic relationship between different

modalities for designing a generalized and robust learning system is an important task

for pushing forward medical machine intelligence.

Towards trustworthy medical image analysis systems. Adversarial examples

have raised concerns about the practical deployment of deep learning systems for image

classification, person re-identification and object detection in the wild as illustrated

in some of our previous studies [231–235]. Beyond the computer vision area, the

existence of adversarial examples is ubiquitous for essentially every type of machine

learning model ever studied and across a wide range of data types, including images,

audio and text. Here we select a few CT images as well as their adversarial examples

in Figure 9-1, to demonstrate the vulnerabilities of existing medical machine learning

systems. However, compared with other applications, the clinical practice of deep

learning requires a higher level of safety and security standard. Our previous attempts
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of adversarial training, in which the defense mechanism augments each training

minibatch with adversarial examples, suggest a solid improvement in the robustness

of medical machine learning systems [236]. As shown in Figure 9-1, our results show

quite promising defenses against adversarial attacks. How to build medical defenses

which can secure against conceivable present and future attacks should be further

explored.
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